Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 109: 154584, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36610114

RESUMO

BACKGROUND: Ginsenosides, phenolic compounds, and polysaccharides are the bioactive constituents of Panax ginseng Meyer. Compound K (CK) is a secondary ginsenoside with better bioavailability. It is also a promising anticancer agent. PURPOSE: We aimed to evaluate the effect of CK on prostate cancer (PCa) and its potential mechanisms. STUDY DESIGN: The proliferation, migration and cell cycle of PCa cells after CK treatment were assessed in various PCa cell lines. Docetaxel was used as a positive control drug. Unlike other published studies, the potential mechanisms of CK (50 µM) were investigated by an unbiased global transcriptome sequencing in the current study. METHODS: Key CK related genes (CRGs) with prognostic significance were identified and verified by bioinformatic methods using data from the TCGA dataset and GSE21034 dataset. The role of CDK1 in the effect of CK treatment on PCa cells was investigated by overexpression of CDK1. RESULTS: CK inhibited the proliferation and migration of PCa cells at concentrations (less than 25 µM) without obvious cytotoxicity. Five key CRGs with prognostic significance were identified, including CCNA2, CCNB2, CCNE2, CDK1, and PKMYT1, which are involved in cell cycle pathways. CK inhibited the expression of these 5 genes and the cell cycle of PCa cells. According to the results of bioinformatic analysis, the expression of the five key CRGs was strongly associated with poor prognosis and advanced pathological stage and grade of PCa. In addition, CK could restore androgen sensitivity in castration-resistant PCa cells, probably by inhibiting the expression of CDK1. After CDK1 overexpression, the inhibition of proliferation and migration of PCa cells by CK was decreased. The inhibition on the phosphorylation of AKT by CK was also reduced. CONCLUSION: CK can inhibit PCa cells, and the mechanisms may be associated with the inhibition of cell cycle pathways through CDK1. CK is also a potential clinical anticancer agent for treating PCa.


Assuntos
Antineoplásicos , Ginsenosídeos , Neoplasias da Próstata , Masculino , Humanos , Ginsenosídeos/farmacologia , Antineoplásicos/farmacologia , Ciclo Celular , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Proliferação de Células , Linhagem Celular Tumoral , Proteínas de Membrana , Proteínas Tirosina Quinases/farmacologia , Proteínas Serina-Treonina Quinases
2.
Front Pharmacol ; 11: 1257, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903510

RESUMO

BACKGROUND: Erectile dysfunction (ED) occurs more frequently and causes a worse response to the first-line therapies in diabetics compared with nondiabetic men. Corpus cavernosum vascular dysfunction plays a pivotal role in the occurrence of diabetes mellitus ED (DMED). The aim of this study was to investigate the protective effects of glucagon-like peptide-1 (GLP-1) analog liraglutide on ED and explore the underlying mechanisms in vivo and in vitro. METHODS: Type 1 diabetes was induced in rats by streptozotocin, and the apomorphine test was for screening the DMED model in diabetic rats. Then they were randomly treated with subcutaneous injections of liraglutide (0.3 mg/kg/12 h) for 4 weeks. Erectile function was assessed by cavernous nerve electrostimulation. The corpus cavernosum was used for further study. In vitro, effects of liraglutide were evaluated by primary corpus cavernosum smooth muscle cells (CCSMCs) exposed to low or high glucose (HG)-containing medium with or without liraglutide and GLP-1 receptor (GLP-1R) inhibitor. Western blotting, fluorescent probe, immunohistochemistry, and relevant assay kits were performed to measure the levels of target proteins. RESULTS: Administration of liraglutide did not significantly affect plasma glucose and body weights in diabetic rats, but improved erectile function, reduced levels of NADPH oxidases and ROS production, downregulated expression of Ras homolog gene family (RhoA) and Rho-associated protein kinase (ROCK) 2 in the DMED group dramatically. The liraglutide treatment promoted autophagy further and restored expression of GLP-1R in the DMED group. Besides, cultured CCSMCs with liraglutide exhibited a lower level of oxidative stress accompanied by inhibition of the RhoA/ROCK pathway and a higher level of autophagy compared with HG treatment. These beneficial effects of liraglutide effectively reversed by GLP-1R inhibitor. CONCLUSION: Liraglutide exerts protective effects on ED associated with the regulation of smooth muscle dysfunction, oxidative stress and autophagy, independently of a glucose- lowering effect. It provides new insight into the extrapancreatic actions of liraglutide and preclinical evidence for a potential treatment for DMED.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA