Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 103: 154234, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35689903

RESUMO

BACKGROUND: The Modified Shenlingbaizhu Decoction (MSD) utilizes various phytomedicines has been applied to treat colorectal cancer (CRC). Colorectal cancer stem cells (CSCs) have proven to be tightly associated with CRC progression and metastasis. The mechanism of MSD's inhibitory effect on CSCs has not been determined. PURPOSE: To figure out how MSD inhibits the pluripotency of CSCs and impedes the EMT program. METHODS: The ingredients of MSD extracts were characterized by high-performance liquid chromatography (HPLC). BALB/c-nu mice were transplanted into EGFP labeled SW480 CRC cells and the tumor weight and volume were recorded before and after various doses of MSD treatment. The concentration of TGF-ß1 was quantified with an Enzyme-linked immunosorbent assay. To delineate the logical relationship between EMT and CSCs regulated by MSD, TGF-ß/Smad inhibitor and activator were adopted in tumor-bearing mice and diverse CRC cell lines. Cancer stem cell markers were analyzed by flow cytometry. In vitro analysis of cell motility and viability were done using CCK-8, wound healing, and invasion assay. Immunohistochemistry (IHC) and western blotting (WB) were used for detecting protein expression. The collected results were statistically analyzed with GraphPad Prism 8.0. RESULTS: MSD treatment significantly reduced the size of colorectal cancer tumors and lowered the serum content of TGF-ß1 in mice. Importantly, MSD markedly reduced the expression of pluripotent factors and depressed CD133+ stem cells in the tumor tissues. The TGF-ß/Smad inhibitor neutralized the EMT signaling and lowered the pluripotency by dephosphorylation of SMAD2/3. Similarly, MSD attenuated the pluripotency by limiting TGF-ß/Smad signaling-induced EMT in vivo. MSD inhibited colorectal cancer cell proliferation, migration, and invasion. CONCLUSIONS: MSD inhibits the growth of colorectal cancer. It dampens the pluripotency of CSCs by repressing the TGF-ß-induced EMT program.


Assuntos
Neoplasias Colorretais , Medicamentos de Ervas Chinesas , Células-Tronco Neoplásicas , Células-Tronco Pluripotentes , Fator de Crescimento Transformador beta1 , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Neoplasias Colorretais/sangue , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Medicamentos de Ervas Chinesas/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fitoterapia , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/patologia , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Fator de Crescimento Transformador beta1/sangue
2.
J Ethnopharmacol ; 296: 115457, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35753609

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Poria cocos polysaccharides (PCP) are abundant in Poria cocos (Schw.) Wolf (Poria). This is a common traditional Chinese medicine used to treat gastrointestinal and liver diseases. Poria cocos dispel dampness and enhance gastrointestinal functions, strongly affecting the treatment of non-alcoholic fatty liver disease. Still, the mechanism is not yet clear. AIM OF THE STUDY: The latest research found that protecting the integrity of the intestinal barrier can slow down the progression of non-alcoholic fatty liver disease (NAFLD). Hence, our research ought to explore the protective mechanism of PCP on the intestinal barrier under a high-fat diet and to clarify the relationship between intestinal barrier damage and steatohepatitis. MATERIALS AND METHODS: H&E staining was done to evaluate pathological damage, whereas Nile red and oil red O staining was conducted to evaluate hepatic fat infiltration. Immunofluorescence staining and immunohistochemical staining were used to detect protein expression and locations. Bone marrow-derived macrophages were isolated for in vitro experiments. ONOO- and ROS fluorescent probes and MDA, SOD, and GSH kits assessed the levels of nitrogen and oxidative stress. LPS levels were detected with a Limulus Amebocyte Lysate assay. The Western blot analysis and reverse transcription-quantitative PCR detected the expression of related proteins and genes. The Elisa kit detected the level of the inflammatory factors in the cell supernatant. For the vivo NAFLD experiments, in briefly, mice were randomly chosen to receive either a High-fat diet or control diet for 12 weeks. Drug treatments started after 4 weeks of feeding. Zebrafish larvae were raised separately in fish water or 7 mM thioacetamide as the control or model group for approximately 72 h. In the therapy groups, different concentrations of PCP were added to the culture environment at the same time. RESULTS: In zebrafish, we determined the safe concentration of PCP and found that PCP could effectively reduce the pathological damage in the liver and intestines induced by the NAFLD model. In mice, PCP could slow down weight gain, hyperlipidemia, and liver steatosis caused by a high-fat diet. More importantly, PCP could reduce the destruction of the gut-vascular barrier and the translocation of endotoxins caused by a high-fat diet. Further, we found that PCP could inhibit intestinal pyroptosis by regulating PARP-1. Pyroptosis inhibitors, such as MCC950, could effectively protect the intestinal and liver damage induced by a high-fat diet. We also found that pyroptosis mainly occurred in intestinal macrophages. PCP could effectively improve the survival rate of bone marrow-derived macrophages in a high-fat environment and inhibit pyroptosis. CONCLUSIONS: These results indicated that PCP inhibited the pyroptosis of small intestinal macrophages to protect the intestinal barrier integrity under a high-fat diet. This resulted in decreased endotoxin translocation and progression of steatohepatitis.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Wolfiporia , Animais , Dieta Hiperlipídica , Fígado , Camundongos , Hepatopatia Gordurosa não Alcoólica/patologia , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Piroptose , Peixe-Zebra
3.
J Pharmacol Sci ; 145(1): 115-121, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33357769

RESUMO

As a natural compound isolated from Paeoniae radix, Paeoniflorin (PF) has been shown the antitumor effects in various types of human cancers including glioma, which is one of the serious tumors in central nervous system. Translocator protein 18 KDa (TSPO) has been shown to be relevant to the glioma aetiology. However, the regulation of PF in TSPO and neurosteriods biosynthesis on glioma is still unclear. In the present study, the glioma cell (U87 and U251) were cultured and used to quantify the bindings of PF on TSPO. Results indicated that there was not significant different between IC50 of PF and TSPO ligand PK11195. Moreover, PF exerted the anti-proliferative effects in glioma cell with a dose dependent inhibition from 12.5 to 100 µM in vitro. Consistent with the effects of PK11195, lowered levels on progesterone, allopregnanolone, as well as TSPO mRNA were induced by PF (25 and 50 µM). Furthermore, a xenograft mouse model with U87 cell-derived was significant inhibited by PF treatment, as well as the PK11195 administration. These results demonstrate that PF exerts its antitumor effects associated with the TSPO and neurosteroids biosynthesis in glioma cells could be a promising therapeutic agent for glioma therapy.


Assuntos
Antineoplásicos Fitogênicos , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Glioma/tratamento farmacológico , Glioma/genética , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Monoterpenos/farmacologia , Monoterpenos/uso terapêutico , Fitoterapia , Receptores de GABA/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Glioma/metabolismo , Glioma/patologia , Isoquinolinas/farmacologia , Isoquinolinas/uso terapêutico , Neuroesteroides/metabolismo
4.
Biomed Pharmacother ; 126: 110092, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32203890

RESUMO

Actinidia chinensis Planch (ACP) was the kiwifruit plant Chinese kiwifruit Actinidia chinensis Planch Root, which had been approved to be an anti-tumor drug widespread in clinical. However, the specific mechanism of ACP in resistance to gastric cancer remained unclear. Therefore, our study was dedicated to investigate the anti-proliferation and anti-migration effects of ACP on gastric cancer cells and its molecular mechanisms. Firstly, we utilized HPLC-MS to analyze the composition of ACP decoction, the results showed that ACP contained two main anti-tumor components, Ursolic acid and Oleanolic acid. The proliferation and migration ability of HGC-27 were examined by CCK-8 and cell scratch tests respectively. In addition, we also investigated HGC-27 cells apoptosis, mesenchymal phenotype and ferroptosis after ACP rat drug-containing serum (ACPs) treatment. EGFP-expressing lentiviral vectors were utilized to construct HGC-27 cells which containing green fluorescence. Then we take advantages of containing green fluorescence cells to establish a zebrafish xenograft model in vivo. The CCK-8 and cell scratch experiments verified that ACPs significantly inhibited proliferation and migration of HGC-27 in vitro. ACPs increased cells apoptosis rate, while were rescued by apoptosis inhibitor Z-VAD-FMK. Furthermore, ACPs downregulated the expression levels of Vimentin protein and Snail protein markedly. Intriguingly, ACPs increased the accumulation of ROS via inhibited the glutathione peroxidase 4 (GPx4) and xCT (SLC7A11) proteins, while were inhibited by Ferrostatin-1 (Fer-1) significantly. Furthermore, the zebrafish xenograft study further confirmed that administration of ACP suppressed the xenograft growth and metastasis of transplanted HGC-27 cells in vivo. In conclusion, ACP was a promising antineoplastic agent for the treatment of gastric cancer by regulating apoptosis, ferroptosis and mesenchymal phenotype.


Assuntos
Actinidia/química , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Biomarcadores , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Humanos , Espectrometria de Massas , Camundongos , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Ratos , Espécies Reativas de Oxigênio
5.
Metab Brain Dis ; 31(5): 1143-9, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27311612

RESUMO

Post-traumatic stress disorder (PTSD) is a severe psychiatric condition. The allopregnanolone biosynthesis has been implicated as one of the possible contributors to PTSD. Inulin-type oligosaccharides of morinda officinalis (IOMO) had been shown to be effective in the therapy of depression. However, few studies concern the anti-PTSD-like effects of IOMO. To evaluate this, the single prolonged stress (SPS) model was used in the present study. It had been shown that the behavioral deficits of SPS-treated rats were reversed by IOMO (25.0 and 50.0 mg/kg, i.p.), which reversed the increased freezing time in contextual fear paradigm (CFP) and the decreased time and entries in open arms in the elevated plus maze (EPM) test without affecting the locomotor activity in the open field (OF) test. In addition, the decreased allopregnanolone in the prefrontal cortex, hippocampus, and amygdala was reversed by IOMO (25.0 and 50.0 mg/kg, i.p.), respectively. In summary, the present study indicated that the IOMO exert anti-PTSD-like behaviors, which maybe associated with the brain allopregnanolone biosynthesis.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Inulina/uso terapêutico , Morinda , Oligossacarídeos/uso terapêutico , Extratos Vegetais/uso terapêutico , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Inulina/isolamento & purificação , Inulina/farmacologia , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Oligossacarídeos/isolamento & purificação , Oligossacarídeos/farmacologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Raízes de Plantas , Ratos , Ratos Sprague-Dawley , Transtornos de Estresse Pós-Traumáticos/metabolismo , Transtornos de Estresse Pós-Traumáticos/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA