Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37508170

RESUMO

The effectiveness of rabbit-sperm cryopreservation is still below average compared to other domestic species. After the sperm cryopreservation process, post-thawing parameters like motility and membrane integrity are significantly compromised. The use of new extender constituents is an approach that can be used to improve the effectiveness of cryopreservation. Accordingly, we used honey (1.25, 2.5, 5, and 10%), coenzyme Q10 (100 and 200 µM), and ß-carotene/α-tocopherol (500 µM/620 µM and 250 µM/310 µM) as candidate components for rabbit-sperm extenders during cryopreservation. Ejaculates from commercial adult rabbit bucks (n = 5) were cryopreserved using conventional freezing. Several post-thawing sperm parameters were assessed, including total motility, membrane integrity, viability, nuclear membrane integrity, acrosome reaction, and mitochondrial membrane potential and activation. Additionally, we performed hormonal analyses of the seminal plasma. Moreover, we analyzed the post-thawing levels of a molecular marker of sperm quality, proAKAP4, which was used in rabbits for the first time. Our findings showed that the 2.5% honey supplementation increased the post-thawing sperm motility (13.75 ± 3.75%) compared to the greater concentrations employed. However, the post-thawing motility was negatively affected by the coenzyme Q10 (0%, in both groups) but was not affected by the ß-carotene/α-tocopherol supplementation (22 ± 18.15%, and 11.67 ± 10.17%). In conclusion, the cryopreservation protocols of this study did not help to maintain the sperm parameters after thawing. Further studies are required to identify novel protocols to mitigate the damage caused to rabbit sperm during cryopreservation.

2.
Appl Microbiol Biotechnol ; 107(2-3): 691-717, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36595038

RESUMO

Plant biomass is a promising substrate for biorefinery, as well as a source of bioactive compounds, platform chemicals, and precursors with multiple industrial applications. These applications depend on the hydrolysis of its recalcitrant structure. However, the effective biological degradation of plant cell walls requires several enzymatic groups acting synergistically, and novel enzymes are needed in order to achieve profitable industrial hydrolysis processes. In the present work, a feruloyl esterase (FAE) activity screening of Penicillium spp. strains revealed a promising candidate (Penicillium rubens Wisconsin 54-1255; previously Penicillium chrysogenum), where two FAE-ORFs were identified and subsequently overexpressed. Enzyme extracts were analyzed, confirming the presence of FAE activity in the respective gene products (PrFaeA and PrFaeB). PrFaeB-enriched enzyme extracts were used to determine the FAE activity optima (pH 5.0 and 50-55 °C) and perform proteome analysis by means of MALDI-TOF/TOF mass spectrometry. The studies were completed with the determination of other lignocellulolytic activities, an untargeted metabolite analysis, and upscaled FAE production in stirred tank reactors. The findings described in this work present P. rubens as a promising lignocellulolytic enzyme producer. KEY POINTS: • Two Penicillium rubens ORFs were first confirmed to have feruloyl esterase activity. • Overexpression of the ORFs produced a novel P. rubens strain with improved activity. • The first in-depth proteomic study of a P. rubens lignocellulolytic extract is shown.


Assuntos
Penicillium chrysogenum , Penicillium , Penicillium chrysogenum/metabolismo , Proteômica/métodos , Penicillium/metabolismo , Extratos Vegetais/metabolismo , Proteínas Fúngicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA