Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36982516

RESUMO

Selenium (Se) is an essential micronutrient of fundamental importance to human health and the main Se source is from plant-derived foods. Plants mainly take up Se as selenate (SeO42-), through the root sulfate transport system, because of their chemical similarity. The aims of this study were (1) to characterize the interaction between Se and S during the root uptake process, by measuring the expression of genes coding for high-affinity sulfate transporters and (2) to explore the possibility of increasing plant capability to take up Se by modulating S availability in the growth medium. We selected different tetraploid wheat genotypes as model plants, including a modern genotype, Svevo (Triticum turgidum ssp. durum), and three ancient Khorasan wheats, Kamut, Turanicum 21, and Etrusco (Triticum turgidum ssp. turanicum). The plants were cultivated hydroponically for 20 days in the presence of two sulfate levels, adequate (S = 1.2 mM) and limiting (L = 0.06 mM), and three selenate levels (0, 10, 50 µM). Our findings clearly showed the differential expression of genes encoding the two high-affinity transporters (TdSultr1.1 and TdSultr1.3), which are involved in the primary uptake of sulfate from the rhizosphere. Interestingly, Se accumulation in shoots was higher when S was limited in the nutrient solution.


Assuntos
Selênio , Triticum , Humanos , Ácido Selênico , Triticum/metabolismo , Tetraploidia , Sulfatos/metabolismo , Selênio/metabolismo , Genótipo
2.
Theor Appl Genet ; 134(12): 4013-4024, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34477900

RESUMO

KEY MESSAGE: The suppression of the HYD-1 gene by a TILLING approach increases the amount of ß-carotene in durum wheat kernel. Vitamin A deficiency is a major public health problem that affects numerous countries in the world. As humans are not able to synthesize vitamin A, it must be daily assimilated along with other micro- and macronutrients through the diet. Durum wheat is an important crop for Mediterranean countries and provides a discrete amount of nutrients, such as carbohydrates and proteins, but it is deficient in some essential micronutrients, including provitamin A. In the present work, a targeting induced local lesions in genomes strategy has been undertaken to obtain durum wheat genotypes biofortified in provitamin A. In detail, we focused on the suppression of the ß-carotene hydroxylase 1 (HYD1) genes, encoding enzymes involved in the redirection of ß-carotene toward the synthesis of the downstream xanthophylls (neoxanthin, violaxanthin and zeaxanthin). Expression analysis of genes involved in carotenoid biosynthesis revealed a reduction of the abundance of HYD1 transcripts greater than 50% in mutant grain compared to the control. The biochemical profiling of carotenoid in the wheat mutant genotypes highlighted a significant increase of more than 70% of ß-carotene compared to the wild-type sibling lines, with no change in lutein, α-carotene and zeaxanthin content. This study sheds new light on the molecular mechanism governing carotenoid biosynthesis in durum wheat and provides new genotypes that represent a good genetic resource for future breeding programs focused on the provitamin A biofortification through non-transgenic approaches.


Assuntos
Engenharia Metabólica , Oxigenases de Função Mista/genética , Provitaminas/biossíntese , Sementes/química , Triticum/genética , Vitamina A/biossíntese , Carotenoides , Grão Comestível/química , Grão Comestível/genética , Alimentos Fortificados , Técnicas de Inativação de Genes , Genótipo , Filogenia , Melhoramento Vegetal , Triticum/química , Xantofilas , Zeaxantinas/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA