Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Clin Sci (Lond) ; 136(9): 675-694, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35441670

RESUMO

Vascular endothelial growth factor antagonism with angiogenesis inhibitors in cancer patients induces a 'preeclampsia-like' syndrome including hypertension, proteinuria and elevated endothelin (ET)-1. Cyclo-oxygenase (COX) inhibition with aspirin is known to prevent the onset of preeclampsia in high-risk patients. In the present study, we hypothesised that treatment with aspirin would prevent the development of angiogenesis inhibitor-induced hypertension and kidney damage. Our aims were to compare the effects of low-dose (COX-1 inhibition) and high-dose (dual COX-1 and COX-2 inhibition) aspirin on blood pressure, vascular function, oxidative stress, ET-1 and prostanoid levels and kidney damage during angiogenesis-inhibitor therapy in rodents. To this end, Wistar Kyoto rats were treated with vehicle, angiogenesis inhibitor (sunitinib) alone or in combination with low- or high-dose aspirin for 8 days (n=5-7/group). Our results demonstrated that prostacyclin (PGI2) and ET-1 were increased during angiogenesis-inhibitor therapy, while thromboxane (TXA2) was unchanged. Both low- and high-dose aspirin blunted angiogenesis inhibitor-induced hypertension and vascular superoxide production to a similar extent, whereas only high-dose aspirin prevented albuminuria. While circulating TXA2 and prostaglandin F2α levels were reduced by both low- and high-dose aspirin, circulating and urinary levels PGI2 were only reduced by high-dose aspirin. Lastly, treatment with aspirin did not significantly affect ET-1 or vascular function. Collectively our findings suggest that prostanoids contribute to the development of angiogenesis inhibitor-induced hypertension and renal damage and that targeting the prostanoid pathway could be an effective strategy to mitigate the unwanted cardiovascular and renal toxicities associated with angiogenesis inhibitors.


Assuntos
Hipertensão , Pré-Eclâmpsia , Inibidores da Angiogênese/uso terapêutico , Animais , Aspirina/farmacologia , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Endotelina-1/metabolismo , Epoprostenol/metabolismo , Epoprostenol/farmacologia , Epoprostenol/uso terapêutico , Feminino , Humanos , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Rim/metabolismo , Pré-Eclâmpsia/induzido quimicamente , Pré-Eclâmpsia/tratamento farmacológico , Pré-Eclâmpsia/metabolismo , Gravidez , Prostaglandina-Endoperóxido Sintases/metabolismo , Ratos , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Clin Sci (Lond) ; 123(8): 499-507, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22563892

RESUMO

Red wine polyphenols may preserve endothelial function during aging. Endothelial cell senescence enhances age-related endothelial dysfunction. We investigated whether RWE (red wine extract) prevents oxidative-stress-induced senescence in HUVECs (human umbilical-vein endothelial cells). Senescence was induced by exposing HUVECs to tBHP (t-butylhydroperoxide), and quantified by senescence-associated ß-galactosidase staining. RWE (0-50 µg/ml) concentration dependently decreased senescence by maximally 33±7.1%. RWE prevented the senescence-associated increase in p21 protein expression, inhibited tBHP-induced DNA damage of endothelial cells and induced relaxation of PCAs (porcine coronary arteries). Inhibition of SIRT1 (sirtuin 1) by sirtinol partially reversed the effect of RWE on tBHP-induced senescence, whereas both the NOS (nitric oxide synthase) inhibitor L-NMMA (NG-monomethyl-L-arginine) and the COX (cyclo-oxygenase) inhibitor indomethacin fully inhibited it. Furthermore, incubation of HUVECs with RWE increased eNOS (endothelial NOS) and COX-2 mRNA levels as well as phosphorylation of eNOS at Ser1177. RWE protects endothelial cells from tBHP-induced senescence. NO and COX-2, in addition to activation of SIRT1, play a critical role in the inhibition of senescence induction in human endothelial cells by RWE.


Assuntos
Senescência Celular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Vinho/análise , Antioxidantes/farmacologia , Células Cultivadas , Senescência Celular/fisiologia , Dano ao DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/fisiologia , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Prostaglandinas/metabolismo , Resveratrol , Sirtuína 1/fisiologia , Estilbenos/farmacologia , beta-Galactosidase/metabolismo , terc-Butil Hidroperóxido/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA