Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Food Funct ; 15(2): 569-579, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38170495

RESUMO

This study investigates the anti-inflammatory effects of pectins with different degrees of methyl esterification (DM) on intestinal epithelial cells (IECs) expressing low and high levels of TLR2. It also studies the influence of soluble TLR2 (sTLR2) which may be enhanced in patients with inflammatory bowel syndrome on the inflammation-attenuating effects of pectins. Also, it examines the impact of pectins on tight junction gene expression in IECs. Lemon pectins with DM18 and DM88 were characterized, and their effects on TLR2-1-induced IL8 gene expression and secretion were investigated in low-TLR2 expressing Caco-2 and high-TLR2 expressing DLD-1 cells. The results demonstrate that both DM18 and DM88 pectins can counteract TLR2-1-induced IL-8 expression and secretion, with more pronounced effects observed in DLD-1 cells expressing high levels of TLR2. Furthermore, the presence of sTLR2 does not interfere with the attenuating effects of low DM18 pectin and may even support its anti-inflammatory effects in Caco-2 cells. The impact of pectins and sTLR2 on tight junction gene expression also demonstrates cell-type-dependent effects. Overall, these findings suggest that low DM pectins possess potent anti-inflammatory properties and may influence tight junction gene expression in IECs, thereby contributing to the maintenance of gut homeostasis.


Assuntos
Interleucina-8 , Receptor 2 Toll-Like , Humanos , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Células CACO-2 , Junções Íntimas/metabolismo , Esterificação , Expressão Gênica , Pectinas/farmacologia , Pectinas/metabolismo , Anti-Inflamatórios/metabolismo
2.
Front Immunol ; 13: 1028953, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466902

RESUMO

Inflammatory Bowel Disease (IBD) is characterized by a loss of intestinal barrier function caused by an aberrant interaction between the immune response and the gut microbiota. In IBD, imbalance in cholesterol homeostasis and mitochondrial bioenergetics have been identified as essential events for activating the inflammasome-mediated response. Mitochondrial alterations, such as reduced respiratory complex activities and reduced production of tricarboxylic acid (TCA) cycle intermediates (e.g., citric acid, fumarate, isocitric acid, malate, pyruvate, and succinate) have been described in in vitro and clinical studies. Under inflammatory conditions, mitochondrial architecture in intestinal epithelial cells is dysmorphic, with cristae destruction and high dynamin-related protein 1 (DRP1)-dependent fission. Likewise, these alterations in mitochondrial morphology and bioenergetics promote metabolic shifts towards glycolysis and down-regulation of antioxidant Nuclear erythroid 2-related factor 2 (Nrf2)/Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) signaling. Although the mechanisms underlying the mitochondrial dysfunction during mucosal inflammation are not fully understood at present, metabolic intermediates and cholesterol may act as signals activating the NLRP3 inflammasome in IBD. Notably, dietary phytochemicals exhibit protective effects against cholesterol imbalance and mitochondrial function alterations to maintain gastrointestinal mucosal renewal in vitro and in vivo conditions. Here, we discuss the role of cholesterol and mitochondrial metabolism in IBD, highlighting the therapeutic potential of dietary phytochemicals, restoring intestinal metabolism and function.


Assuntos
Inflamassomos , Doenças Inflamatórias Intestinais , Humanos , Mitocôndrias , Colesterol , Doença Crônica , Glicólise , Ácido Pirúvico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA