Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 325(4): E363-E375, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37646579

RESUMO

Cancer-related fatigue (CRF) is one of the most common complications in patients with multiple cancer types and severely affects patients' quality of life. However, there have only been single symptom-relieving adjuvant therapies but no effective pharmaceutical treatment for the CRF syndrome. Dichloroacetate (DCA), a small molecule inhibitor of pyruvate dehydrogenase kinase, has been tested as a potential therapy to slow tumor growth, based largely on its effects in vitro to halt cell division. We found that although DCA did not affect rates of tumor growth or the efficacy of standard cancer treatment (immunotherapy and chemotherapy) in two murine cancer models, DCA preserved physical function in mice with late-stage tumors by reducing circulating lactate concentrations. In vivo liquid chromatography-mass spectrometry/mass spectrometry studies suggest that DCA treatment may preserve membrane potential, postpone proteolysis, and relieve oxidative stress in muscles of tumor-bearing mice. In all, this study provides evidence for DCA as a novel pharmaceutical treatment to maintain physical function and motivation in murine models of CRF.NEW & NOTEWORTHY We identify a new metabolic target for cancer-related fatigue, dichloroacetate (DCA). They demonstrate that in mice, DCA preserves physical function and protects against the detrimental effects of cancer treatment by reducing cancer-induced increases in circulating lactate. As DCA is already FDA approved for another indication, these results could be rapidly translated to clinical trials for this condition for which no pharmaceutical therapies exist beyond symptom management.


Assuntos
Ácido Dicloroacético , Fadiga , Melanoma , Qualidade de Vida , Animais , Camundongos , Ácido Dicloroacético/farmacologia , Ácido Dicloroacético/uso terapêutico , Fadiga/tratamento farmacológico , Fadiga/etiologia , Ácido Láctico/metabolismo , Melanoma/complicações
2.
J Anat ; 238(3): 743-750, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33094520

RESUMO

The anatomy of the hypothalamus includes many nuclei and a complex network of neurocircuits. In this context, some hypothalamic nuclei reside closer to the blood-brain barrier, allowing communication with the peripheral organs through some molecules, such as leptin. Leptin is considered the main adipokine for energy homeostasis control. Furthermore, leptin signalling in the hypothalamus can communicate with insulin signalling through the activation of phosphoinositide 3-kinase (PI3k). Previous data suggest that isoforms of PI3k are necessary to mediate insulin action in the hypothalamus. However, obese animals show impairment in the central signalling of these hormones. Thus, in the current study, we evaluated the role of acute exercise in the leptin and insulin pathways in the hypothalamus, as well as in food intake control in obese mice. Although acute physical exercise was not able to modulate leptin signalling, this protocol suppressed the increase in the suppressor of cytokine signalling 3 (SOCS3) protein levels. In addition, acute exercise increased the content of PI3k-p110α protein in the hypothalamus. The exercised animals showed a strong tendency to reduction in cumulative food intake. For the first time, our results indicate physical exercise can increase PI3k-p110α protein content in the hypothalamus of obese mice and regulate food intake.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Obesidade/terapia , Condicionamento Físico Animal/fisiologia , Animais , Masculino , Camundongos , Obesidade/metabolismo
3.
Eur J Nutr ; 59(6): 2427-2437, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31494696

RESUMO

PURPOSE: Nicotinamide riboside (NR) acts as a potent NAD+ precursor and improves mitochondrial oxidative capacity and mitochondrial biogenesis in several organisms. However, the effects of NR supplementation on aerobic performance remain unclear. Here, we evaluated the effects of NR supplementation on the muscle metabolism and aerobic capacity of sedentary and trained mice. METHODS: Male C57BL/6 J mice were supplemented with NR (400 mg/Kg/day) over 5 and 10 weeks. The training protocol consisted of 5 weeks of treadmill aerobic exercise, for 60 min a day, 5 days a week. Bioinformatic and physiological assays were combined with biochemical and molecular assays to evaluate the experimental groups. RESULTS: NR supplementation by itself did not change the aerobic performance, even though 5 weeks of NR supplementation increased NAD+ levels in the skeletal muscle. However, combining NR supplementation and aerobic training increased the aerobic performance compared to the trained group. This was accompanied by an increased protein content of NMNAT3, the rate-limiting enzyme for NAD + biosynthesis and mitochondrial proteins, including MTCO1 and ATP5a. Interestingly, the transcriptomic analysis using a large panel of isogenic strains of BXD mice confirmed that the Nmnat3 gene in the skeletal muscle is correlated with several mitochondrial markers and with different phenotypes related to physical exercise. Finally, NR supplementation during aerobic training markedly increased the amount of type I fibers in the skeletal muscle. CONCLUSION: Taken together, our results indicate that NR may be an interesting strategy to improve mitochondrial metabolism and aerobic capacity.


Assuntos
Aerobiose/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , NAD/metabolismo , Niacinamida/análogos & derivados , Compostos de Piridínio/metabolismo , Compostos de Piridínio/farmacologia , Animais , Respiração Celular/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Niacinamida/metabolismo , Niacinamida/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA