Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
2.
J Pineal Res ; 68(3): e12639, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32061110

RESUMO

Circadian rhythms and clock gene expressions are regulated by the suprachiasmatic nucleus in the hypothalamus, and melatonin is produced in the pineal gland. Although the brain detects the light through retinas and regulates rhythms and melatonin secretion throughout the body, the liver has independent circadian rhythms and expressions as well as melatonin production. Previous studies indicate the association between circadian rhythms with various liver diseases, and disruption of rhythms or clock gene expression may promote liver steatosis, inflammation, or cancer development. It is well known that melatonin has strong antioxidant effects. Alcohol drinking or excess fatty acid accumulation produces reactive oxygen species and oxidative stress in the liver leading to liver injuries. Melatonin administration protects these oxidative stress-induced liver damage and improves liver conditions. Recent studies have demonstrated that melatonin administration is not limited to antioxidant effects and it has various other effects contributing to the management of liver conditions. Accumulating evidence suggests that restoring circadian rhythms or expressions as well as melatonin supplementation may be promising therapeutic strategies for liver diseases. This review summarizes recent findings for the functional roles and therapeutic potentials of circadian rhythms and melatonin in liver diseases.


Assuntos
Ritmo Circadiano/fisiologia , Hepatopatias , Melatonina/metabolismo , Animais , Humanos
3.
Br J Haematol ; 178(6): 936-948, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28653353

RESUMO

The epigenome is often deregulated in cancer and treatment with inhibitors of bromodomain and extra-terminal proteins, the readers of epigenetic acetylation marks, represents a novel therapeutic approach. Here, we have characterized the anti-tumour activity of the novel bromodomain and extra-terminal (BET) inhibitor BAY 1238097 in preclinical lymphoma models. BAY 1238097 showed anti-proliferative activity in a large panel of lymphoma-derived cell lines, with a median 50% inhibitory concentration between 70 and 208 nmol/l. The compound showed strong anti-tumour efficacy in vivo as a single agent in two diffuse large B cell lymphoma models. Gene expression profiling showed BAY 1238097 targeted the NFKB/TLR/JAK/STAT signalling pathways, MYC and E2F1-regulated genes, cell cycle regulation and chromatin structure. The gene expression profiling signatures also highly overlapped with the signatures obtained with other BET Bromodomain inhibitors and partially overlapped with HDAC-inhibitors, mTOR inhibitors and demethylating agents. Notably, BAY 1238097 presented in vitro synergism with EZH2, mTOR and BTK inhibitors. In conclusion, the BET inhibitor BAY 1238097 presented promising anti-lymphoma preclinical activity in vitro and in vivo, mediated by the interference with biological processes driving the lymphoma cells. Our data also indicate the use of combination schemes targeting EZH2, mTOR and BTK alongside BET bromodomains.


Assuntos
Antineoplásicos/uso terapêutico , Benzodiazepinas/uso terapêutico , Linfoma não Hodgkin/tratamento farmacológico , Adenina/análogos & derivados , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Benzodiazepinas/administração & dosagem , Benzodiazepinas/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Sinergismo Farmacológico , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/biossíntese , Everolimo/farmacologia , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Linfoma não Hodgkin/genética , Linfoma não Hodgkin/patologia , Camundongos SCID , Piperidinas , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Pirazóis/farmacologia , Pirimidinas/farmacologia , Células Tumorais Cultivadas/efeitos dos fármacos , Células Tumorais Cultivadas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Am J Pathol ; 185(4): 1061-72, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25794706

RESUMO

During cholestatic liver disease, there is dysregulation in the balance between biliary growth and loss in bile duct-ligated (BDL) rats modulated by neuroendocrine peptides via autocrine/paracrine pathways. Gonadotropin-releasing hormone (GnRH) is a trophic peptide hormone that modulates reproductive function and proliferation in many cell types. We evaluated the autocrine role of GnRH in the regulation of cholangiocyte proliferation. The expression of GnRH receptors was assessed in a normal mouse cholangiocyte cell line (NMC), sham, and BDL rats. The effect of GnRH administration was evaluated in normal rats and in NMC. GnRH-induced biliary proliferation was evaluated by changes in intrahepatic bile duct mass and the expression of proliferation and function markers. The expression and secretion of GnRH in NMC and isolated cholangiocytes was assessed. GnRH receptor subtypes GnRHR1 and GnRHR2 were expressed in cholangiocytes. Treatment with GnRH increased intrahepatic bile duct mass as well as proliferation and function markers in cholangiocytes. Transient knockdown and pharmacologic inhibition of GnRHR1 in NMC decreased proliferation. BDL cholangiocytes had increased expression of GnRH compared with normal rats, accompanied by increased GnRH secretion. In vivo and in vitro knockdown of GnRH decreased intrahepatic bile duct mass/cholangiocyte proliferation and fibrosis. GnRH secreted by cholangiocytes promotes biliary proliferation via an autocrine pathway. Disruption of GnRH/GnRHR signaling may be important for the management of cholestatic liver diseases.


Assuntos
Comunicação Autócrina , Ductos Biliares Intra-Hepáticos/citologia , Hormônio Liberador de Gonadotropina/metabolismo , Comunicação Parácrina , Animais , Ductos Biliares Intra-Hepáticos/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , AMP Cíclico/metabolismo , Imunofluorescência , Inativação Gênica/efeitos dos fármacos , Hipotálamo/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Cirrose Hepática/patologia , Masculino , Camundongos , Morfolinos/administração & dosagem , Morfolinos/farmacologia , Comunicação Parácrina/efeitos dos fármacos , Ratos Endogâmicos F344 , Receptores LHRH/metabolismo
5.
J Neurosurg ; 105(5): 789-96, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17121149

RESUMO

Despite the significant Italian tradition of important anatomical studies, an outdated law historically influenced by the Catholic church restricts the use of cadavers for teaching and scientific purposes. The object of the present paper was to trace the historical evolution of the Italian anatomical tradition, particularly neuroanatomical studies, in relation to the juridical regulations on the use of cadavers today. Special attention was paid to the opportunities offered to neurosurgery by using cadavers and to the scientific and social issues in neurosurgical training in the twenty-first century. Considering the new Common European Constitution, the authors advocate a political solution from the European community to improve the quality of training in the disciplines with a social impact such as neurosurgery.


Assuntos
Dissecação/história , Neuroanatomia/história , Neurocirurgia/história , Cadáver , Dissecação/legislação & jurisprudência , História do Século XV , História do Século XVI , História do Século XVII , História do Século XVIII , História do Século XIX , História do Século XX , História Antiga , História Medieval , Humanos , Itália
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA