Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
eNeuro ; 8(4)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34326065

RESUMO

Bombesin receptor subtype-3 (BRS3) is an orphan receptor that regulates energy homeostasis. We compared Brs3 driver mice with constitutive or inducible Cre recombinase activity. The constitutive BRS3-Cre mice show a reporter signal (Cre-dependent tdTomato) in the adult brain because of lineage tracing in the dentate gyrus, striatal patches, and indusium griseum, in addition to sites previously identified in the inducible BRS3-Cre mice (including hypothalamic and amygdala subregions, and parabrachial nucleus). We detected Brs3 reporter expression in the dentate gyrus at day 23 but not at postnatal day 1 or 5 months of age. Hypothalamic sites expressed reporter at all three time points, and striatal patches expressed Brs3 reporter at 1 day but not 5 months. Parabrachial nucleus Brs3 neurons project to the preoptic area, hypothalamus, amygdala, and thalamus. Both Cre recombinase insertions reduced Brs3 mRNA levels and BRS3 function, causing obesity phenotypes of different severity. These results demonstrate that driver mice should be characterized phenotypically and illustrate the need for knock-in strategies with less effect on the endogenous gene.


Assuntos
Integrases , Receptores da Bombesina , Animais , Encéfalo/metabolismo , Hipotálamo/metabolismo , Integrases/genética , Integrases/metabolismo , Camundongos , Camundongos Transgênicos , Receptores da Bombesina/metabolismo
2.
Hepatology ; 73(3): 1176-1193, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32438524

RESUMO

BACKGROUND AND AIMS: Iron is essential yet also highly chemically reactive and potentially toxic. The mechanisms that allow cells to use iron safely are not clear; defects in iron management are a causative factor in the cell-death pathway known as ferroptosis. Poly rC binding protein 1 (PCBP1) is a multifunctional protein that serves as a cytosolic iron chaperone, binding and transferring iron to recipient proteins in mammalian cells. Although PCBP1 distributes iron in cells, its role in managing iron in mammalian tissues remains open for study. The liver is highly specialized for iron uptake, utilization, storage, and secretion. APPROACH AND RESULTS: Mice lacking PCBP1 in hepatocytes exhibited defects in liver iron homeostasis with low levels of liver iron, reduced activity of iron enzymes, and misregulation of the cell-autonomous iron regulatory system. These mice spontaneously developed liver disease with hepatic steatosis, inflammation, and degeneration. Transcriptome analysis indicated activation of lipid biosynthetic and oxidative-stress response pathways, including the antiferroptotic mediator, glutathione peroxidase type 4. Although PCBP1-deleted livers were iron deficient, dietary iron supplementation did not prevent steatosis; instead, dietary iron restriction and antioxidant therapy with vitamin E prevented liver disease. PCBP1-deleted hepatocytes exhibited increased labile iron and production of reactive oxygen species (ROS), were hypersensitive to iron and pro-oxidants, and accumulated oxidatively damaged lipids because of the reactivity of unchaperoned iron. CONCLUSIONS: Unchaperoned iron in PCBP1-deleted mouse hepatocytes leads to production of ROS, resulting in lipid peroxidation (LPO) and steatosis in the absence of iron overload. The iron chaperone activity of PCBP1 is therefore critical for limiting the toxicity of cytosolic iron and may be a key factor in preventing the LPO that triggers the ferroptotic cell-death pathway.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fígado Gorduroso/etiologia , Compostos de Ferro/metabolismo , Peroxidação de Lipídeos , Metalochaperonas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Feminino , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos Knockout , Estresse Oxidativo
3.
Am J Physiol Endocrinol Metab ; 320(2): E270-E280, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166186

RESUMO

The G-protein subunits Gqα and G11α (Gq/11α) couple receptors to phospholipase C, leading to increased intracellular calcium. In this study we investigated the consequences of Gq/11α deficiency in the dorsomedial hypothalamus (DMH), a critical site for the control of energy homeostasis. Mice with DMH-specific deletion of Gq/11α (DMHGq/11KO) were generated by stereotaxic injection of adeno-associated virus (AAV)-Cre-green fluorescent protein (GFP) into the DMH of Gqαflox/flox:G11α-/- mice. Compared with control mice that received DMH injection of AAV-GFP, DMHGq/11KO mice developed obesity associated with reduced energy expenditure without significant changes in food intake or physical activity. DMHGq/11KO mice showed no defects in the ability of the melanocortin agonist melanotan II to acutely stimulate energy expenditure or to inhibit food intake. At room temperature (22°C), DMHGq/11KO mice showed reduced sympathetic nervous system activity in brown adipose tissue (BAT) and heart, accompanied with decreased basal BAT uncoupling protein 1 (Ucp1) gene expression and lower heart rates. These mice were cold intolerant when acutely exposed to cold (6°C for 5 h) and had decreased cold-stimulated BAT Ucp1 gene expression. DMHGq/11KO mice also failed to adapt to gradually declining ambient temperatures and to develop adipocyte browning in inguinal white adipose tissue although their BAT Ucp1 was proportionally stimulated. Consistent with impaired cold-induced thermogenesis, the onset of obesity in DMHGq/11KO mice was significantly delayed when housed under thermoneutral conditions (30°C). Thus our results show that Gqα and G11α in the DMH are required for the control of energy homeostasis by stimulating energy expenditure and thermoregulation.NEW & NOTEWORTHY This paper demonstrates that signaling within the dorsomedial hypothalamus via the G proteins Gqα and G11α, which couple cell surface receptors to the stimulation of phospholipase C, is critical for regulation of energy expenditure, thermoregulation by brown adipose tissue and the induction of white adipose tissue browning.


Assuntos
Doenças do Sistema Nervoso Autônomo/genética , Metabolismo Energético/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Hipotálamo/metabolismo , Obesidade/genética , Animais , Doenças do Sistema Nervoso Autônomo/metabolismo , Doenças do Sistema Nervoso Autônomo/fisiopatologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/deficiência , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Obesidade/fisiopatologia , Especificidade de Órgãos/genética , Sistema Nervoso Simpático/metabolismo , Sistema Nervoso Simpático/fisiopatologia
4.
PLoS One ; 15(12): e0243986, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33326493

RESUMO

Extracellular adenosine, a danger signal, can cause hypothermia. We generated mice lacking neuronal adenosine A1 receptors (A1AR, encoded by the Adora1 gene) to examine the contribution of these receptors to hypothermia. Intracerebroventricular injection of the selective A1AR agonist (Cl-ENBA, 5'-chloro-5'-deoxy-N6-endo-norbornyladenosine) produced hypothermia, which was reduced in mice with deletion of A1AR in neurons. A non-brain penetrant A1AR agonist [SPA, N6-(p-sulfophenyl) adenosine] also caused hypothermia, in wild type but not mice lacking neuronal A1AR, suggesting that peripheral neuronal A1AR can also cause hypothermia. Mice expressing Cre recombinase from the Adora1 locus were generated to investigate the role of specific cell populations in body temperature regulation. Chemogenetic activation of Adora1-Cre-expressing cells in the preoptic area did not change body temperature. In contrast, activation of Adora1-Cre-expressing dorsomedial hypothalamus cells increased core body temperature, concordant with agonism at the endogenous inhibitory A1AR causing hypothermia. These results suggest that A1AR agonism causes hypothermia via two distinct mechanisms: brain neuronal A1AR and A1AR on neurons outside the blood-brain barrier. The variety of mechanisms that adenosine can use to induce hypothermia underscores the importance of hypothermia in the mouse response to major metabolic stress or injury.


Assuntos
Hipotermia/metabolismo , Receptor A1 de Adenosina/metabolismo , Agonistas do Receptor A1 de Adenosina/farmacologia , Animais , Hipotálamo/metabolismo , Hipotálamo/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Nervos Periféricos/metabolismo , Nervos Periféricos/fisiopatologia
5.
Mol Metab ; 36: 100969, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32229422

RESUMO

OBJECTIVE: Bombesin-like receptor 3 (BRS3) is an orphan receptor and Brs3 knockout mice develop obesity with increased food intake and reduced resting metabolic rate and body temperature. The neuronal populations contributing to these effects were examined. METHODS: We studied energy metabolism in mice with Cre-mediated recombination causing 1) loss of BRS3 selectively in SIM1- or MC4R-expressing neurons or 2) selective re-expression of BRS3 from a null background in these neurons. RESULTS: The deletion of BRS3 in MC4R neurons increased body weight/adiposity, metabolic efficiency, and food intake, and reduced insulin sensitivity. BRS3 re-expression in these neurons caused partial or no reversal of these traits. However, these observations were confounded by an obesity phenotype caused by the Mc4r-Cre allele, independent of its recombinase activity. The deletion of BRS3 in SIM1 neurons increased body weight/adiposity and food intake, but not to the levels of the global null. The re-expression of BRS3 in SIM1 neurons reduced body weight/adiposity and food intake, but not to wild type levels. The deletion of BRS3 in either MC4R- or SIM1-expressing neurons affected body temperature, with re-expression in either population reversing the null phenotype. MK-5046, a BRS3 agonist, increases light phase body temperature in wild type, but not Brs3 null, mice and BRS3 re-expression in either population restored response to MK-5046. CONCLUSIONS: BRS3 in both MC4R- and SIM1-expressing neurons contributes to regulation of body weight/adiposity, insulin sensitivity, food intake, and body temperature.


Assuntos
Metabolismo Energético/fisiologia , Neurônios/metabolismo , Receptores da Bombesina/metabolismo , Adiposidade/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Temperatura Corporal/fisiologia , Peso Corporal , Encéfalo/metabolismo , Ingestão de Alimentos/fisiologia , Feminino , Homeostase/fisiologia , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/fisiologia , Obesidade/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Receptores da Bombesina/genética , Proteínas Repressoras/metabolismo
6.
JCI Insight ; 5(5)2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32078583

RESUMO

The blood hormone erythropoietin (EPO), upon binding to its receptor (EpoR), modulates high-fat diet-induced (HFD-induced) obesity in mice, improves glucose tolerance, and prevents white adipose tissue inflammation. Transgenic mice with constitutive overexpression of human EPO solely in the brain (Tg21) were used to assess the neuroendocrine EPO effect without increasing the hematocrit. Male Tg21 mice resisted HFD-induced weight gain; showed lower serum adrenocorticotropic hormone, corticosterone, and C-reactive protein levels; and prevented myeloid cell recruitment to the hypothalamus compared with WT male mice. HFD-induced hypothalamic inflammation (HI) and microglial activation were higher in male mice, and Tg21 male mice exhibited a lower increase in HI than WT male mice. Physiological EPO function in the brain also showed sexual dimorphism in regulating HFD response. Female estrogen production blocked reduced weight gain and HI. Targeted deletion of EpoR gene expression in neuronal cells worsened HFD-induced glucose intolerance in both male and female mice but increased weight gain and HI in the hypothalamus in male mice only. Both male and female Tg21 mice kept on normal chow and HFD showed significantly improved glycemic control. Our data indicate that cerebral EPO regulates weight gain and HI in a sex-dependent response, distinct from EPO regulation of glycemic control, and independent of erythropoietic EPO response.


Assuntos
Encéfalo/metabolismo , Eritropoetina/metabolismo , Hipotálamo/patologia , Inflamação/metabolismo , Fatores Sexuais , Animais , Glicemia/metabolismo , Comportamento Alimentar , Feminino , Hipotálamo/metabolismo , Resistência à Insulina , Masculino , Camundongos , Camundongos Transgênicos , Receptores da Eritropoetina/genética
7.
Mol Metab ; 25: 142-153, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31014927

RESUMO

OBJECTIVE: Gsα couples multiple receptors, including the melanocortin 4 receptor (MC4R), to intracellular cAMP generation. Germline inactivating Gsα mutations lead to obesity in humans and mice. Mice with brain-specific Gsα deficiency also develop obesity with reduced energy expenditure and locomotor activity, and impaired adaptive thermogenesis, but the underlying mechanisms remain unclear. METHODS: We created mice (DMHGsKO) with Gsα deficiency limited to the dorsomedial hypothalamus (DMH) and examined the effects on energy balance and thermogenesis. RESULTS: DMHGsKO mice developed severe, early-onset obesity associated with hyperphagia and reduced energy expenditure and locomotor activity, along with impaired brown adipose tissue thermogenesis. Studies in mice with loss of MC4R in the DMH suggest that defective DMH MC4R/Gsα signaling contributes to abnormal energy balance but not to abnormal locomotor activity or cold-induced thermogenesis. Instead, DMHGsKO mice had impaired leptin signaling along with increased expression of the leptin signaling inhibitor protein tyrosine phosphatase 1B in the DMH, which likely contributes to the observed hyperphagia and reductions in energy expenditure, locomotor activity, and cold-induced thermogenesis. CONCLUSIONS: DMH Gsα signaling is critical for energy balance, thermogenesis, and leptin signaling. This study provides insight into how distinct signaling pathways can interact to regulate energy homeostasis and temperature regulation.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Hiperfagia/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Obesidade/metabolismo , Transdução de Sinais/fisiologia , Termogênese/fisiologia , Tecido Adiposo Marrom/metabolismo , Animais , Metabolismo Energético/fisiologia , Regulação da Expressão Gênica , Predisposição Genética para Doença/genética , Glucose/metabolismo , Homeostase/fisiologia , Masculino , Camundongos , Camundongos Knockout , Obesidade/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Sistema Nervoso Simpático/metabolismo
8.
Endocrinology ; 153(9): 4256-65, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22733970

RESUMO

The G protein α-subunit G(s)α mediates receptor-stimulated cAMP generation. Heterozygous inactivating G(s)α mutations on the maternal allele result in obesity primarily due to reduced energy expenditure in Albright hereditary osteodystrophy patients and in mice. We previously showed that mice with central nervous system (CNS)-specific G(s)α deletion on the maternal allele (mBrGs KO) also develop severe obesity with reduced energy expenditure and that G(s)α is primarily expressed from the maternal allele in the paraventricular nucleus (PVN) of the hypothalamus, an important site of energy balance regulation. We now generated mice with PVN-specific G(s)α deficiency by mating Single-minded 1-cre and G(s)α-floxed mice. Homozygous G(s)α deletion produced early lethality. Heterozygotes with maternal G(s)α deletion (mPVNGsKO) also developed obesity and had small reductions in energy expenditure. However, this effect was much milder than that found in mBrGsKO mice and was more prominent in males. We previously showed mBrGsKO mice to have significant reductions in melanocortin receptor agonist-stimulated energy expenditure and now show that mBrGsKO mice have impaired cold-induced brown adipose tissue stimulation. In contrast, these effects were absent in mPVNGsKO mice. mPVNGsKO mice also had minimal effects on glucose metabolism as compared with mBrGsKO mice. Consistent with the presence of G(s)α imprinting, paternal heterozygotes showed no changes in energy or glucose metabolism. These results indicate that although G(s)α deficiency in PVN partially contributes to the metabolic phenotype resulting from maternal G(s)α mutations, G(s)α imprinting in other CNS regions is also important in mediating the CNS effects of G(s)α mutations on energy and glucose metabolism.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP/deficiência , Hipotálamo/metabolismo , Obesidade/genética , Núcleo Hipotalâmico Paraventricular/metabolismo , Animais , Composição Corporal/genética , Composição Corporal/fisiologia , Ingestão de Alimentos/genética , Ingestão de Alimentos/fisiologia , Feminino , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Masculino , Camundongos , Camundongos Knockout , Mutação
9.
Nat Commun ; 2: 520, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22044999

RESUMO

Although erythropoietin (Epo) is the cytokine known to regulate erythropoiesis, erythropoietin receptor (EpoR) expression and associated activity beyond haematopoietic tissue remain uncertain. Here we show that mice with EpoR expression restricted to haematopoietic tissues (Tg) develop obesity and insulin resistance. Tg-mice exhibit a decrease in energy expenditure and an increase in white fat mass and adipocyte number. Conversely, Epo treatment of wild-type (WT)-mice increases energy expenditure and reduces food intake and fat mass accumulation but shows no effect in body weight of Tg-mice. EpoR is expressed at a high level in white adipose tissue and in the proopiomelanocortin (POMC) neurons of the hypothalamus. Although Epo treatment in WT-mice induces the expression of the polypeptide hormone precursor, POMC, mice lacking EpoR show reduced levels of POMC in the hypothalamus. This study provides the first evidence that mice lacking EpoR in non-haematopoietic tissue become obese and insulin resistant with loss of Epo regulation of energy homeostasis.


Assuntos
Eritropoetina/farmacologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Obesidade/metabolismo , Pró-Opiomelanocortina/metabolismo , Animais , Western Blotting , Feminino , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/etiologia , Receptores da Eritropoetina/genética , Receptores da Eritropoetina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
PLoS One ; 3(2): e1639, 2008 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-18286195

RESUMO

Signal transducers and activators of transcription (STATs) are critical components of cytokine signaling pathways. STAT5A and STAT5B (STAT5), the most promiscuous members of this family, are highly expressed in specific populations of hypothalamic neurons in regions known to mediate the actions of cytokines in the regulation of energy balance. To test the hypothesis that STAT5 signaling is essential to energy homeostasis, we used Cre-mediated recombination to delete the Stat5 locus in the CNS. Mutant males and females developed severe obesity with hyperphagia, impaired thermal regulation in response to cold, hyperleptinemia and insulin resistance. Furthermore, central administration of GM-CSF mediated the nuclear accumulation of STAT5 in hypothalamic neurons and reduced food intake in control but not in mutant mice. These results demonstrate that STAT5 mediates energy homeostasis in response to endogenous cytokines such as GM-CSF.


Assuntos
Sistema Nervoso Central/metabolismo , Metabolismo Energético , Obesidade/etiologia , Hipófise/metabolismo , Fator de Transcrição STAT5/fisiologia , Transdução de Sinais , Transporte Ativo do Núcleo Celular , Animais , Citocinas/fisiologia , Feminino , Homeostase , Hipotálamo/citologia , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA