Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 806(Pt 4): 150863, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34626633

RESUMO

Enantioselective metabolism of chiral pesticide in plants is very important. In vitro system has become an effective means to study the metabolism of pesticides in plants, but the study on the metabolism of chiral pesticides has not been reported. This work compared the enantiomer metabolic behavior of acephate and its metabolite methamidophos between tea cell suspensions and excised tea stem with leaves. (±)-Acephate could be absorbed and transferred well to top leaves by the cut end of excised stem after 24 h. (±)-Methamidophos was derived from the metabolism of (±)-acephate in tea plants at 3-5% in leaves and 2-3% in stems at 216 h. The content of (+)-methamidophos was 1.5 times higher than that of (-)-methamidophos in excised leaves. Though both (±)-acephate and (±)-methamidophos could be metabolized well by cell suspension, (±)-acephate and (±)-methamidophos was non-enantioselectively metabolized in cell suspension. It was shown that using the excised tea stem with leaves for chiral pesticide metabolism studies was much closer to intact plant than cell suspensions. This result also established an effective and easily available in vitro metabolic model for the study of enantioselective metabolism of chiral contaminants from environment.


Assuntos
Camellia sinensis , Inseticidas , Inseticidas/análise , Compostos Organotiofosforados , Fosforamidas , Folhas de Planta/química , Estereoisomerismo , Suspensões , Chá
2.
Food Chem ; 344: 128579, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33199115

RESUMO

The absorption, distribution, metabolism and primary risk evaluation data of four neonicotinoids and two organophosphate insecticides in tea plant (Camellia sinensis L.) were compared. 22 neonicotinoid metabolites and 2 organophosphate metabolites were identified. The amount ratio of each neonicotinoid metabolite to its corresponding parent (M/P) was lower than 0.076 in the treated time. The organophosphates (omethoate and methamidophos) increased sharply, with M/Ps as high as 1.111 and 0.612. The risks evaluation of insecticides and their metabolites in treated leaves on day seven showed that the chronic risk was from the lowest 0.0759 (clothianidin) to highest 43.6409% (dimethoate), and the acute risk was highest 0.0370 for all targets. The calculated combined toxicity of leaves treated with acephate reached 1.5 folds in mature, 1.5 folds in tender leaves than no metabolites, and which of dimethoate were 2.1 folds in mature and 3.7 folds in tender leaves.


Assuntos
Camellia sinensis/química , Inseticidas/análise , Neonicotinoides/análise , Organofosfatos/análise , Camellia sinensis/metabolismo , Cromatografia Líquida de Alta Pressão , Humanos , Inseticidas/metabolismo , Neonicotinoides/química , Neonicotinoides/metabolismo , Nitrocompostos/química , Nitrocompostos/metabolismo , Organofosfatos/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Caules de Planta/química , Caules de Planta/metabolismo , Risco , Espectrometria de Massas em Tandem , Tiametoxam/análise , Tiametoxam/metabolismo
3.
J Vis Exp ; (148)2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31259887

RESUMO

A platform for studying insecticide metabolism using in vitro tissues of tea plant was developed. Leaves from sterile tea plantlets were induced to form loose callus on Murashige and Skoog (MS) basal media with the plant hormones 2,4-dichlorophenoxyacetic acid (2,4-D, 1.0 mg L-1) and kinetin (KT, 0.1 mg L-1). Callus formed after 3 or 4 rounds of subculturing, each lasting 28 days. Loose callus (about 3 g) was then inoculated into B5 liquid media containing the same plant hormones and was cultured in a shaking incubator (120 rpm) in the dark at 25 ± 1 °C. After 3-4 subcultures, a cell suspension derived from tea leaf was established at a subculture ratio ranging between 1:1 and 1:2 (suspension mother liquid: fresh medium). Using this platform, six insecticides (5 µg mL-1 each thiamethoxam, imidacloprid, acetamiprid, imidaclothiz, dimethoate, and omethoate) were added into the tea leaf-derived cell suspension culture. The metabolism of the insecticides was tracked using liquid chromatography and gas chromatography. To validate the usefulness of the tea cell suspension culture, the metabolites of thiamethoxan and dimethoate present in treated cell cultures and intact plants were compared using mass spectrometry. In treated tea cell cultures, seven metabolites of thiamethoxan and two metabolites of dimethoate were found, while in treated intact plants, only two metabolites of thiamethoxam and one of dimethoate were found. The use of a cell suspension simplified the metabolic analysis compared to the use of intact tea plants, especially for a difficult matrix such as tea.


Assuntos
Camellia sinensis/química , Inseticidas/química , Folhas de Planta/química , Animais , Técnicas de Cultura de Células
4.
J Agric Food Chem ; 67(26): 7538-7546, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31180663

RESUMO

Thiamethoxam (TMX) has already been proven to have a physiological effect in plant tissue or cell expect for the insecticidal activity. In our previous study, TMX was verified to be metabolized by tea cells in either a suspension culture or tea plant into several metabolites. Here, tea cell suspension cultures were treated for 45 days to investigate the metabolite effects in both the tea cells and the culture supernatants by nontargeted metabolomics. Using multivariate analysis (PCA and OPLS-DA), all treatment and control groups could be clearly separated. Inside the cells, 113 metabolites were found to be up-regulated while 122 were down-regulated, when compared with untreated cells. In the culture supernatant, there were 128 up-regulated and 35 down-regulated metabolites, compared to untreated cultures. KEGG searches revealed that the alanine, aspartate, and glutamate metabolic pathways were strongly affected by TMX metabolism within the tea cell. Molecular docking models showed that (i) 4-aminobutyrate aminotransferase may be related to the formation of 2-chloro-thiazole-5-carboxylic acid and (ii) 3'(2'),5'-bisphosphate nucleotidase may be able to interact with TMX. This study can help us to understand the interaction mechanism of pesticides with plant cells.


Assuntos
Camellia sinensis/química , Camellia sinensis/metabolismo , Inseticidas/metabolismo , Tiametoxam/metabolismo , Células Cultivadas , Inseticidas/química , Redes e Vias Metabólicas , Metabolômica , Simulação de Acoplamento Molecular , Tiametoxam/química
5.
J Agric Food Chem ; 66(32): 8593-8601, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30074784

RESUMO

The use of an in vitro cell suspension to study insecticide metabolism is a simpler strategy compared to using intact plants, especially for a difficult matrix such as tea. In this study, a sterile tea leaf callus was inoculated into B5 liquid media with 2,4-dichlorophenoxyacetic acid (2,4-D, 1.0 mg L-1) and Kinetin (KT, 0.1 mg L-1). After 3-4 subcultures (28 days each), a good cell suspension was established. Utilizing these cultures, the metabolic behaviors of six insecticides, including two organophosphates (dimethoate, omethoate) and four neonicotinoids (thiamethoxam, imidacloprid, acetamiprid, and imidaclothiz) were compared. The results showed that thiamethoxam, dimethoate, and omethoate were easily metabolized by tea cells, with degradation ratios after 75 days of 55.3%, 90.4%, and 100%, respectively. Seven metabolites of thiamethoxan and two metabolites of dimethoate were found in treated cell cultures using mass-spectrometry, compared to only two metabolites for thiamethoxam and one for dimethoate in treated intact plants.


Assuntos
Camellia sinensis/metabolismo , Inseticidas/metabolismo , Camellia sinensis/química , Células Cultivadas , Inseticidas/química , Espectrometria de Massas , Estrutura Molecular , Resíduos de Praguicidas/química , Resíduos de Praguicidas/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA