Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 40(4): 1957-1964, 2019 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-31087942

RESUMO

This research studied the response of the input and allocation of photosynthetic carbon (C) to phosphorus (P) in paddy soils. Two treatments were conducted in this experiment:no P application (P0) and the application of 80 mg·kg-1 of P (P80). The rice cultivar was the indica Zhongzao 39. The 13C-CO2 continuous labeling technique was used to identify the photosynthetic C distribution of the rice. The results showed that the application of P80 significantly increased the photosynthates allocation in the rice aboveground, but reduced their allocation in the rhizosphere soil (P<0.05). At the jointing stage, P80 application increased the photosynthetic C content of the rice by 70%, but the root dry weight decreased 31%. Compared with P0, the total C content of the aboveground rice was increased 0.31 g·pot-1 by P80. The ratio of rice roots to shoots decreased with the P80 treatment. Moreover, P80 application led to an increase in the photosynthetic microbial biomass in the non-rhizosphere soil C (13C-MBC) of 0.03 mg·kg-1, but still decreased its allocation in the rhizosphere soil. The allocation of photosynthetic C to the particulate organic matter fraction (POC) and mineral fraction (MOC) in the non-rhizosphere soil showed no significant differences between P0 and P80. Additionally, the P80 fertilization treatment significantly lowered the content of POC in the rhizosphere soil. In summary, P application increased the allocation of photosynthetic C in the soil-rice system, but reduced the accumulation of photosynthetic C in the soil. This research provided a theoretical basis and data supporting the rational application of P fertilizer, and was also of great significance as a study of the transportation and allocation of photosynthetic C and its sequestration potential response to the application of P to the rice soil.


Assuntos
Carbono/química , Fertilizantes , Oryza/fisiologia , Fósforo/química , Solo/química , Fotossíntese
2.
Huan Jing Ke Xue ; 39(1): 430-437, 2018 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-29965711

RESUMO

Four paddy soils were collected in Ningxiang County, Hunan province. These used with different long-term fertilization regimes, including a control without fertilizer (CK), chemical fertilization with nitrogen, phosphate, and kalium (NPK), straw fertilization combined with NPK (ST), and manure fertilization combinedwith NPK (OM). Phospholipid fatty acid (PLFA) technology and MicrorespTM method were used to study the effect of long-term fertilization on soil microorganism abundance, community structure, and activity. Results showed that the abundance of bacteria, fungi, gram-negative (G-) bacteria, and gram-positive (G+) bacteria in the soil from the OM treatment was generally higher than for the other treatments; these levels were lower in the ST and NPK treatments and lowest in the CK treatment. The principal components analysis (PCA) of PLFA showed that the community structure of microorganisms in NPK, ST, and OM treatments was altered in comparison with that in CK, especially in the case of the ST and OM treatments. MicroRespTM results revealed that compared to the CK treatment (1.28 µg·h-1), soil microorganisms in the OM treatment had the highest average utilization rate of multiple carbon sources (1.81 µg·h-1), followed by ST (1.19 µg·h-1), CK (1.28 µg·h-1), and NPK (0.95 µg·h-1). Furthermore, different long-term fertilization regimes resulted in distinct carbon source preferences for the soil microorganisms and revealed a significant alteration in the microbial community. Conclusively, long-term fertilizer with straw or manure changes the microbial community and is a benefit for improving the biomass and activity of microorganism in rice paddy soils.


Assuntos
Biomassa , Fertilizantes , Oryza , Microbiologia do Solo , Agricultura , Esterco , Nitrogênio , Fósforo , Potássio , Solo
3.
Huan Jing Ke Xue ; 39(8): 3901-3909, 2018 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-29998700

RESUMO

The enzyme activity, which is closely related to soil material cycling (mineralization, transformation, etc.), can reflect soil quality and nutrient status. In order to explore the effect of long-term fertilization on the enzyme activity in paddy soil profile (0-40 cm), soils with organic fertilizer and inorganic fertilizer, and non-fertilized soils were selected, and the carbon and nitrogen contents, and the activities of ß-1,4-glucosidase (BG), and ß-1,4-N-acetylglucosaminidase (NAG) in 10cm depths of soil were analyzed. The results showed that the activities of BG and NAG in the soils treated with inorganic fertilizer and organic fertilizer increased by 0.73-47.87 nmol·(g·h)-1 and 1.33-128.81 nmol·(g·h)-1, and 0.19-9.72 nmol·(g·h)-1 and 0.92-57.66 nmol·(g·h)-1, respectively, compared to those for non-fertilized soil. Soil enzyme activity decreased with increasing soil depth. Soil enzyme activity in soil from 0-20 cm was significantly higher than that of soil from 20-40 cm. Soil enzyme activities were significantly affected by long term fertilization at different soil depths. RDA analysis showed that soil carbon and nitrogen contents had significant positive relationships with the activities of BG and NAG in the 0-20 cm soil profiles, however, negative relationships were observed in the 20-40 cm soil profiles. The long-term application of organic fertilizer significantly increased soil biomass and enzyme activity, both of which decreased with the increase in soil depth. Long-term fertilization could increase soil nutrient contents, microbial biomass, and extracellular enzyme activities, which has important theoretical significance for optimizing farmland fertilizer management and improving soil productivity.


Assuntos
Enzimas/análise , Fertilizantes , Microbiologia do Solo , Carbono , N-Acetilglucosaminiltransferases/análise , Nitrogênio , Oryza , Fósforo , Solo , beta-Glucosidase/análise
4.
Ying Yong Sheng Tai Xue Bao ; 29(3): 857-864, 2018 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-29722228

RESUMO

To understand the coupled controlling of carbon (C) and phosphorus (P) on the minera-lization of soil organic carbon and amended substrates in paddy soil, we investigated the effects of P addition on the decomposition of organic carbon and its induced priming effect by using 13C isotope probing technique in microcosm. The results showed that P addition accelerated the release of CO2 but inhibited the release of CH4, leading to 53.1% reduction of total accumulated CH4 and 70.5% reduction of the 13CH4 derived from exotic glucose-13C. P addition altered the carbon distribution during the microbial turnover progress, with 3.6% of glucose-13C being transferred into the labile carbon pool, therein significantly increased potential of the mineralization rate of exogenous C. A transient negative priming effect was observed in the early stage of incubation. With time prolonging, the priming effect on CO2 emission (PECO2) generally increased and then decreased after a peak. The priming effect on CH4 emission (PECH4) kept increasing and finally fluctuated at a relative stable value until the end of the experiment (100 days). P addition increased PECO2 by 32.3% but reduced PECH4 by 93.4%. Results from the RDA and Pearson analysis showed that electric conductivity, oxidation-reduction potential and dissolved organic carbon significantly affected soil C mineralization. There were significantly negative correlations between available phosphorus (Olsen-P) and 13CH4, and between Olsen-P and PECH4. In conclusion, with the addition of exogenous organic matter, P application could reduce CH4 emissions and inhibit its priming effect, acce-lerate the mineralization of SOC, probably improve the nutrient supply, and thus enhance the avai-lability of organic C and promote C cycling in paddy soil.


Assuntos
Carbono , Fósforo/química , Solo/química , Oryza , Microbiologia do Solo
5.
Huan Jing Ke Xue ; 39(12): 5672-5679, 2018 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-30628414

RESUMO

A rice pot experiment was conducted to investigate the effect of phosphorus addition on the abundance of autotrophic CO2-fixation microorganisms using phosphorus-limited paddy soil from the Changsha Observation and Research Station for the Agricultural Environment. Rice seedlings were transplanted in the paddy soil with or without phosphorus addition, corresponding to P-treated-pot (P) or control pot (CK), respectively. Rhizosphere soils were collected from the P and CK treatments during the tillering and shooting stages. The physical and chemical soil properties were measured and the abundance of autotrophic CO2-fixation microorganisms was quantified with a real-time PCR technique based on four functional genes (cbbL, cbbM, accA, and aclB) involved in three CO2-fixation pathways (CBB cycle, rTCA cycle, and 3-hydroxypropionate/4-hydroxybutyrate cycle). The results show that phosphorus addition improves the concentrations of DOC and Olsen-P and the pH value, whereas negative effects on the MBC and NH4+-N concentrations are revealed during the tillering stage. The effect of phosphorus addition on the NO3--N concentration in the tillering and shooting stages differs. Phosphorus addition significantly increases the abundances of the cbbL, cbbM, accA, and aclB genes, which are 156%, 99%, 110%, and 193% higher than those of the CK treatment in the tillering stage. However, this positive effect is not notable for the cbbL, accA, and aclB genes during the shooting stage. Redundancy analysis (RDA) shows that Olsen-P is the environmental factor that most significantly affects the abundance of autotrophic CO2-fixation microorganisms.


Assuntos
Dióxido de Carbono/química , Fósforo/química , Microbiologia do Solo , Solo/química , Bactérias , Fertilizantes , Oryza , Rizosfera , Ribulose-Bifosfato Carboxilase
6.
Huan Jing Ke Xue ; 39(12): 5708-5716, 2018 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-30628418

RESUMO

The variation characteristics of ecological stoichiometric ratios can reflect the nature of plant adaptation to environmental changes. The C, N, and P contetns, and their stoichiometric ratios in different organs of rice were studied using a CO2 continuous labeling system, by simulating the increase of atmospheric CO2 concentration (800×10-6). The results showed that CO2 doubling promoted the growth of rice organs and increased the root/shoot ratio. CO2 doubling reduced the shoot TN content in different growth periods, increased the C/N ratio in the rice root, shoot, and grain, decreased the N use efficiency, and improved the P use efficiency. Multiple comparison and Venn diagram analyses showed that CO2 concentration only has a significant impact on the TN content in the rice shoot; it contributed little to the variation in rice nutrient content and their stoichiometric ratios, indicating that CO2 doubling had no effect on these. Under the condition of elevated atmospheric CO2 concentrations, the C, N, and P contents and their stoichiometirc ratios, in rice organs had good homeostasis, and the stoichiometric change during growth periods was consistent with "the Growth Rate Theory". In farmland management, appropriate nitrogen fertilizers can alleviate the nutrient balance pressure caused by the increase in CO2 concentration.


Assuntos
Dióxido de Carbono/análise , Carbono/análise , Nitrogênio/análise , Oryza/crescimento & desenvolvimento , Fósforo/análise , Oryza/química
7.
Huan Jing Ke Xue ; 38(4): 1606-1612, 2017 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-29965165

RESUMO

A suitable fractionation method of phosphorus (P) is a key to effective assessment of soil P componential features. Here a new biologically-based P (BBP) method was used to evaluate the P fractions in the upland and paddy soils across large-scale area in China. The soil P was divided into four components:① soluble or rhizosphere-intercepted (CaCl2-P), ② organic acid activated and inorganic weakly bound (Citrate-P), ③ enzyme mineralization of organic P (Enzyme-P), ④ potential activation of inorganic P (HCl-P). Then, the relationships between biologically-based P fractions and standard Olsen-P were investigated, and driving factors of P fractions were identified. The results showed that P content was in order of HCl-P>Citrate-P>Enzyme-P>CaCl2-P. All P components of upland soil displayed higher levels than those of paddy soil. Moreover, the P components were highly positively correlated with the Olsen-P, suggesting that each P component contributed to soil P availability. However, it was found that Olsen-P was most highly correlated with CaCl2-P and Enzyme-P (R2=0.359; R2=0.386) in upland soil, while Olsen-P was most highly with Citrate-P (R2=0.788) in paddy soil. This result indicated that available P of upland soil was mainly from organic P mineralization and soluble P, and available P in paddy soil was mainly from inorganic P activation. Redundancy analysis (RDA) showed that the P components were mainly affected by soil pH and silt content, which suggested that it could enhance the P availability via regulating soil pH in the agricultural activities.


Assuntos
Fósforo/química , Solo/química , Agricultura , China , Fazendas , Fertilizantes , Oryza
8.
Ying Yong Sheng Tai Xue Bao ; 21(7): 1759-65, 2010 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-20879534

RESUMO

In order to further understand the mechanisms of microbial immobilization of phosphorous (P) in highly weathered red soil with organic amendment, an incubation test was conducted to investigate the roles of microbial functional groups in the transformation of P in 0.2-2 mm soil aggregates. Throughout the 90-day incubation period, amendment with rice straw induced a substantial increase in the amounts of microbial biomass C and P, Olsen-P, and organic P in the aggregates. Comparing with rice straw amendment alone, the amendment with rice straw plus fungal inhibitor actidione decreased the amount of microbial biomass C in the aggregates by 10.5%-31.8% in the first 30 days. Such a decrement was significantly larger than that (6.8%-11.6%) in the treatment amended with rice straw plus bacterial inhibitors tetracycline and streptomycin sulphate (P<0.01). After the first 30 days, the microbial biomass C remained constant. In the first 20 days, the amount of microbial biomass P in the aggregates was 10.0%-28.8% higher in the treatment amended with bacterial inhibitors than in the treatment amended with fungal inhibitor (P<0.01). All the results suggested that that both the fungal and the bacterial groups were involved in the microbial immobilization of P in the soil aggregates, and the fungal group played a relatively larger role.


Assuntos
Anti-Infecciosos/farmacologia , Bactérias/metabolismo , Fósforo/metabolismo , Caules de Planta/química , Microbiologia do Solo , Agricultura/métodos , Bactérias/efeitos dos fármacos , Biotransformação , Fertilizantes , Fungos/efeitos dos fármacos , Fungos/metabolismo , Oryza/química , Oryza/crescimento & desenvolvimento , Fósforo/química , Eliminação de Resíduos/métodos , Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA