Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neural Transm (Vienna) ; 122(5): 643-51, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25233798

RESUMO

Streptococcus pneumoniae is a common cause of bacterial meningitis, with a high mortality rate and neurological sequelae. In contrast, folic acid plays an important role in neuroplasticity and the preservation of neuronal integrity. In the present study, we evaluated the influence of folic acid on memory, oxidative damage, enzymatic defence, and brain-derived neurotrophic factor (BDNF) expression in experimental pneumococcal meningitis. In animals that received folic acid at a dose of 10 or 50 mg, there was a reduction in both crossing and rearing during an open-field task compared with the training session, demonstrating habituation memory. During a step-down inhibitory avoidance task, there was a difference between the training and the test sessions, demonstrating aversive memory. In the hippocampus, BDNF expression decreased in the meningitis group; however, adjuvant treatment with 10 mg of folic acid increased BDNF expression, decreased lipid peroxidation, protein carbonylation, nitrate/nitrite levels, and myeloperoxidase activity and increased superoxide dismutase activity. In frontal cortex adjuvant treatment with 10 mg of folic acid decreased lipid peroxidation and protein carbonylation. There is substantial interest in the role of folic acid and related pathways in nervous system function and in folic acid's potential therapeutic effects. Here, adjuvant treatment with vitamin B9 prevented memory impairment in experimental pneumococcal meningitis.


Assuntos
Transtornos Cognitivos/prevenção & controle , Ácido Fólico/farmacologia , Lobo Frontal/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Meningite Pneumocócica/tratamento farmacológico , Nootrópicos/farmacologia , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/fisiopatologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Lobo Frontal/fisiopatologia , Hipocampo/fisiopatologia , Inibição Psicológica , Masculino , Memória/efeitos dos fármacos , Meningite Pneumocócica/complicações , Meningite Pneumocócica/fisiopatologia , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Distribuição Aleatória , Ratos Wistar
2.
Mol Neurobiol ; 52(1): 734-40, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25284351

RESUMO

Pneumococcal meningitis is a serious infection of the central nervous system (CNS) with high fatality rates that causes reduced psychomotor performance, slight mental slowness, impairments in attention executive functions and learning and memory deficiencies. Previously, we demonstrated a correlation between memory impairment and decreased levels of brain-derived neurotropic factor (BDNF) in the hippocampi of rats subjected to pneumococcal meningitis. Emerging evidence demonstrates that histone acetylation regulates neurotrophins; therefore, a potential molecular intervention against cognitive impairment in bacterial meningitis may be the histone deacetylase (HDAC) inhibitor, sodium butyrate, which stimulates the acetylation of histones and increases BDNF expression. In this study, animals received either artificial cerebrospinal fluid as a placebo or a Streptococcus pneumoniae suspension at a concentration of 5 × 10(9) colony-forming units (CFU/mL). The animals received antibiotic treatment as usual and received saline or sodium butyrate as an adjuvant treatment. Ten days after, meningitis was induced; the animals were subjected to open-field habituation and the step-down inhibitory avoidance task. Immediately after these behavioural tasks, the animals were killed, and their hippocampi were removed to evaluate the expression of BDNF, nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF). In the meningitis group that received saline, the animals presented memory impairment in both behavioural tasks, and hippocampal BDNF and GDNF expression was decreased. Sodium butyrate was able to prevent memory impairment and re-establish hippocampal neurotrophin expression in experimental pneumococcal meningitis.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ácido Butírico/uso terapêutico , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/prevenção & controle , Meningite Pneumocócica/complicações , Meningite Pneumocócica/tratamento farmacológico , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Ácido Butírico/farmacologia , Habituação Psicofisiológica , Masculino , Transtornos da Memória/complicações , Fator de Crescimento Neural/metabolismo , Ratos Wistar
3.
Exp Biol Med (Maywood) ; 239(10): 1360-5, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24903161

RESUMO

Streptococcus pneumoniae is the relevant cause of bacterial meningitis, with a high-mortality rate and long-term neurological sequelae, affecting up to 50% of survivors. Pneumococcal compounds are pro-inflammatory mediators that induce an innate immune response and tryptophan degradation through the kynurenine pathway. Vitamin B6 acts as a cofactor at the active sites of enzymes that catalyze a great number of reactions involved in the metabolism of tryptophan, preventing the accumulation of neurotoxic intermediates. In the present study, we evaluated the effects of vitamin B6 on memory and on brain-derived neurotrophic factor (BDNF) expression in the brain of adult Wistar rats subjected to pneumococcal meningitis. The animals received either 10 µL of artificial cerebral spinal fluid (CSF) or an equivalent volume of S. pneumoniae suspension. The animals were divided into four groups: control, control treated with vitamin B6, meningitis, and meningitis treated with vitamin B6. Ten days after induction, the animals were subjected to behavioral tests: open-field task and step-down inhibitory avoidance task. In the open-field task, there was a significant reduction in both crossing and rearing in the control group, control/B6 group, and meningitis/B6 group compared with the training session, demonstrating habituation memory. However, the meningitis group showed no difference in motor and exploratory activity between training and test sessions, demonstrating memory impairment. In the step-down inhibitory avoidance task, there was a difference between training and test sessions in the control group, control/B6 group, and meningitis/B6 group, demonstrating aversive memory. In the meningitis group, there was no difference between training and test sessions, demonstrating impairment of aversive memory. In the hippocampus, BDNF expression decreased in the meningitis group when compared to the control group; however, adjuvant treatment with vitamin B6 increased BDNF expression in the meningitis group. Thus, vitamin B6 attenuated the memory impairment in animals subjected to pneumococcal meningitis.


Assuntos
Transtornos Cognitivos/prevenção & controle , Meningite Pneumocócica/complicações , Vitamina B 6/administração & dosagem , Vitaminas/administração & dosagem , Animais , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Perfilação da Expressão Gênica , Hipocampo/patologia , Humanos , Masculino , Memória , Ratos Wistar
4.
Transl Res ; 163(5): 503-13, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24440628

RESUMO

Pneumococcal meningitis is characterized by a severe inflammatory reaction in the subarachnoid and ventricular space of the brain, disruption of the blood-brain barrier, hearing loss, and neurologic sequelae in as many as 27% of surviving patients. Several experimental studies have shown that erythropoietin (EPO) and its receptor are expressed in the central nervous system and have neuroprotective properties through the inhibition of apoptosis, as well as anti-inflammatory, antioxidant, angiogenic, and neurotrophic effects. In the current study, we demonstrated the effect of erythropoietin (EPO) on lipid peroxidation, protein carbonylation, superoxide dismutase (SOD), catalase (CAT), myeloperoxidase (MPO), and behavioral parameters in rats with pneumococcal meningitis. EPO decreased lipid peroxidation and protein carbonylation, and it prevented protein degradation in the hippocampus and frontal cortex. MPO activity was decreased, and both SOD and CAT activity were increased in the first 6 hours after pneumococcal meningitis induction. Novel object recognition memory was impaired in the meningitis group; however, adjuvant treatment with EPO prevented memory impairment during both the short- and long-term retention tests. The meningitis group showed no difference in motor and exploratory activity between training and test sessions in the open-field task, which indicates that habituation memory was impaired; however, adjuvant treatment with EPO prevented habituation memory impairment. Although there are some limitations with respect to the animal model of pneumococcal meningitis, this study suggests that adjuvant treatment with EPO contributed to decreased oxidative stress and prevented cognitive impairment.


Assuntos
Transtornos Cognitivos/tratamento farmacológico , Eritropoetina/uso terapêutico , Meningite Pneumocócica/patologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Comportamento Animal , Catalase , Transtornos Cognitivos/metabolismo , Peroxidação de Lipídeos , Meningite Pneumocócica/tratamento farmacológico , Meningite Pneumocócica/metabolismo , Peroxidase , Carbonilação Proteica , Ratos , Ratos Wistar , Superóxido Dismutase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA