RESUMO
The genetic basis of many epilepsies is increasingly understood, giving rise to the possibility of precision treatments tailored to specific genetic etiologies. Despite this, current medical therapy for most epilepsies remains imprecise, aimed primarily at empirical seizure reduction rather than targeting specific disease processes. Intellectual and technological leaps in diagnosis over the past 10 years have not yet translated to routine changes in clinical practice. However, the epilepsy community is poised to make impressive gains in precision therapy, with continued innovation in gene discovery, diagnostic ability, and bioinformatics; increased access to genetic testing and counseling; fuller understanding of natural histories; agility and rigor in preclinical research, including strategic use of emerging model systems; and engagement of an evolving group of stakeholders (including patient advocates, governmental resources, and clinicians and scientists in academia and industry). In each of these areas, we highlight notable examples of recent progress, new or persistent challenges, and future directions. The future of precision medicine for genetic epilepsy looks bright if key opportunities on the horizon can be pursued with strategic and coordinated effort.
Assuntos
Epilepsia , Medicina de Precisão , Epilepsia/diagnóstico , Epilepsia/genética , Epilepsia/terapia , Testes Genéticos , Humanos , Convulsões/genética , SugestãoRESUMO
Congenital long QT syndrome (LQTS) is an inherited channelopathy associated with life-threatening arrhythmias. LQTS type 2 (LQT2) is caused by mutations in KCNH2, which encodes the potassium channel hERG. We hypothesized that modifier genes are partly responsible for the variable phenotype severity observed in some LQT2 families. Here, we identified contributors to variable expressivity in an LQT2 family by using induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) and whole exome sequencing in a synergistic manner. We found that iPSC-CMs recapitulated the clinical genotype-phenotype discordance in vitro. Importantly, iPSC-CMs derived from the severely affected LQT2 patients displayed prolonged action potentials compared with cells from mildly affected first-degree relatives. The iPSC-CMs derived from all patients with hERG R752W mutation displayed lower IKr amplitude. Interestingly, iPSC-CMs from severely affected mutation-positive individuals exhibited greater L-type Ca2+ current. Whole exome sequencing identified variants of KCNK17 and the GTP-binding protein REM2, providing biologically plausible explanations for this variable expressivity. Genome editing to correct a REM2 variant reversed the enhanced L-type Ca2+ current and prolonged action potential observed in iPSC-CMs from severely affected individuals. Thus, our findings showcase the power of combining complementary physiological and genomic analyses to identify genetic modifiers and potential therapeutic targets of a monogenic disorder. Furthermore, we propose that this strategy can be deployed to unravel myriad confounding pathologies displaying variable expressivity.
Assuntos
Síndrome do QT Longo/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Mutação , Canais de Potássio de Domínios Poros em Tandem/genética , Potenciais de Ação , Adolescente , Adulto , Animais , Arritmias Cardíacas/metabolismo , Células CHO , Cálcio/metabolismo , Cricetinae , Cricetulus , Exoma , Saúde da Família , Feminino , Genes Modificadores , Estudos de Associação Genética , Genoma , Genômica , Humanos , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/citologia , Linhagem , Fenótipo , Análise de Sequência de DNARESUMO
OBJECTIVE: Differences exist among various populations with regards to hypertension prevalence, severity, progression and response to therapy. Such differences may be due to genetic or environmental factors. We characterized the genetic variation and haplotype diversity of four hypertension candidate genes (CLCNKA, CLCNKB, BSND, NEDD4L) in four different ethnic groups (Caucasian Americans, African-Americans, Han Chinese, and Mexican-Americans). METHODS: We genotyped 42 single nucleotide polymorphisms across the four genes in equal numbers of each ethnically defined population, then tested for linkage disequilibrium, computed allelic and haplotype frequencies, and compared data across the different ethnic groups. RESULTS: We identified significant genotype and allele frequency differences among ethnic groups. The strongest differences were observed between African-American and Mexican-Americans and between Caucasian and Mexican-Americans. In addition, haplotype blocks were defined for BSND, CLCNKA_B and NEDD4L in the four populations examined. Completely mismatched ('yin yang') haplotypes were also observed. We found that the number of inferred halpotypes varied gene to gene and in some instances between the populations for a given gene indicating substantial haplotype diversity. The haplotype diversity among the various ethnic populations observed in our study was greater than that reported in Perlegen database. CONCLUSIONS: Haplotype diversity in hypertension candidate genes has important implications for designing and evaluating candidate gene or genome-wide blood pressure association studies that consider these genes.