Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Lasers Surg Med ; 52(10): 1032-1040, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32525253

RESUMO

BACKGROUND AND OBJECTIVES: Transdermal differentiation of human adipose stem cells (ASCs) to other cell types is still a challenge in regenerative medicine. Studies using primary ASCs are also limited as they may undergo replicative senescence during repeated passages in vitro. However, ASCs immortalized (iASCs) with human telomerase enzyme expressing plasmid exhibits a uniform population suitable for differentiation in vitro. A right combination of biological and physical stimuli may induce transdermal differentiation of iASCs into neurons in vitro. STUDY DESIGN/MATERIALS AND METHODS: iASCs were differentiated to free-floating neural stem cell aggregates (neurospheres) using a combination of growth inducers. Cells in these spheres were induced to differentiate into neurons using low-intensity lasers by a process called photobiomodulation (PBM). RESULTS: Laser at the near infrared (NIR) wavelength 825 nm and fluences 5, 10, and 15 J/cm2 was capable of increasing the differentiation of neurospheres to neurons. Precisely, there was a statistically significant increase in the early neuronal marker at 5 J/cm2 and a much appreciable increase at 15 J/cm2 in correlation with the biphasic dose response of PBM. However, these differentiated cells failed to express late neuronal markers in vitro. Comparison of these differentiating iASCs with the primary ASCs revealed a sharp distinction between the metabolic processes of the primary ASCs, neurospheres, and newly differentiated neurons. CONCLUSION: We found that PBM increased the yield of neurons and effected stem cell differentiation through modulation of cellular metabolism and redox status. Our study also identifies that iASCs are an excellent model for analysis of stem cell biology and for performing transdermal differentiation. SIGNIFICANCE: This study demonstrates that a combination of biological and physical inducers can advance the differentiation of adipose stem cells to neurons. We were able to establish the optimal energy for the neuronal differentiation of iASCs in vitro. Lasers Surg. Med. © 2020 Wiley Periodicals LLC.


Assuntos
Terapia com Luz de Baixa Intensidade , Tecido Adiposo , Diferenciação Celular , Humanos , Neurônios , Células-Tronco
2.
Talanta ; 208: 120482, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31816773

RESUMO

There are a number of analytical techniques used to study material related problems. Most of them imply experimental determination of parameters and functions by means of which elemental, optical and other properties of materials can be described. Laser Induced Breakdown Spectroscopy (LIBS) and Raman spectroscopy are highly complementary spectroscopic techniques used for lab, in-situ, and remote analyses of materials. The LIBS-Raman system provides further information compared to other conventional techniques since it can detect the presence of low atomic number-elements, isotopic composition, hydration and structure of trace materials which may be present as surface layers etc., which are very difficult, if not impossible, by portable X-ray based systems. A setup for LIBS and Raman spectroscopy measurements in a single unit has been developed and reported recently by us using an echelle spectrograph system. The system utilizes a single nanosecond pulsed Nd:YAG laser (532 nm) and an ICCD coupled echelle spectrograph for both measurements. The unit has been successfully used for multipurpose applications such as identification of minerals, pigments etc and also for checking quality assurance. The combined atomic and molecular information from the same location on a sample, at several locations, can provide more comprehensive information regarding its properties than using either of these quantities taken singly. In many cases, it has been observed that the high resolution of the echelle spectrograph provides better quality Raman signals by virtue of the small degeneracy/crystal field splitting of many fundamental Raman bands. This can provide valuable information on inclusions in bulk samples, changes due to symmetry alteration or complex formation with surroundings, hydrogen bonding etc. The advantage of echelle system to identify natural and artificial pigments by identifying the minor and trace components by the spectra of the elements therein, is also helpful in many situations. In the present paper, the orthogonal use of LIBS and Raman spectroscopy is assessed and highlighted. The results clearly demonstrate the potential of echelle-based LIBS-Raman system in applications where more detailed information on complex samples like minerals, archaeological artifacts etc, is required with minimum sample damage or consumption.

3.
Photomed Laser Surg ; 36(5): 230-240, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29570423

RESUMO

BACKGROUND: Neurological diseases and disorders pose a challenge for treatment and rehabilitation due to the limited capacity of the nervous system to repair itself. Adipose stem cells (ASCs) are more pliable than any adult stem cells and are capable of differentiating into non-mesodermal tissues, including neurons. Transdifferentiating ASCs to specific neuronal lineage cells enables us to deliver the right type of cells required for a replacement therapy into the nervous system. METHODS: Several methodologies are being explored and tested to differentiate ASCs to functional neurons and glia with cellular factors and chemical compounds. However, none of these processes and prototypes has been wholly successful in changing the cellular structure and functional status of ASCs to become identical to neuroglial cells. In addition, successful integration and functional competence of these cells for use in clinical applications remain problematic. Photobiomodulation or low-level laser irradiation has been successfully applied to not only improve ASC viability and proliferation but has also shown promise as a possible enhancer of ASC differentiation. CONCLUSIONS: Studies have shown that photobiomodulation improves the use of stem cell transplantation for neurological applications. This review investigates current neuro-differentiation inducers and suitable methodologies, including photobiomodulation, utilizing ASCs for induction of differentiation into neuronal lineages.


Assuntos
Adipócitos/transplante , Diferenciação Celular/fisiologia , Terapia com Luz de Baixa Intensidade/métodos , Neuroglia/citologia , Transplante de Células-Tronco/métodos , Adipócitos/citologia , Animais , Diferenciação Celular/efeitos da radiação , Sobrevivência Celular/fisiologia , Humanos , Técnicas In Vitro , Neuroglia/fisiologia , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA