Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 162: 111807, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33162055

RESUMO

Petroleum waxes (PWs) are recognized as ubiquitously emerging marine pollutants. However, knowledge on their occurrence, particularly as persistent floaters of small size (<5 mm) in marine surface water, is scarce. For this study, 24 samples were collected in the North Sea by net-sampling (100 µm-mesh). Particles of wax-like appearance were detected at 14 stations. Similar appearing PWs from six stations with highest abundances were pooled per station and analyzed by ATR-FTIR (Attenuated total reflectance Fourier-transform infrared spectroscopy) and gas chromatography. Samples contained paraffin particles, being partly accompanied by substances like fatty acids and fatty alcohols. Using both analytical techniques provided a reliable detection of PWs and more details on their chemical composition. Furthermore, exemplarily the presence of PWs of 20-500 µm size was proven by µFTIR imaging. This study gives valuable insights into PW pollution in the North Sea, emphasizing the need for harmonized detection methods, ideally accompanying microplastics monitoring.


Assuntos
Petróleo , Poluentes Químicos da Água , Monitoramento Ambiental , Mar do Norte , Parafina , Plásticos , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise , Ceras
2.
FEMS Microbiol Ecol ; 81(3): 520-36, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22462472

RESUMO

Diversity of indigenous microbial consortia and natural occurrence of obligate hydrocarbon-degrading bacteria (OHCB) are of central importance for efficient bioremediation techniques. To investigate the microbial population dynamics and composition of oil-degrading consortia, we have established a series of identical oil-degrading mesocosms at three different locations, Bangor (Menai Straits, Irish Sea), Helgoland (North Sea) and Messina (Messina Straits, Mediterranean Sea). Changes in microbial community composition in response to oil spiking, nutrient amendment and filtration were assessed by ARISA and DGGE fingerprinting and 16Sr RNA gene library analysis. Bacterial and protozoan cell numbers were quantified by fluorescence microscopy. Very similar microbial population sizes and dynamics, together with key oil-degrading microorganisms, for example, Alcanivorax borkumensis, were observed at all three sites; however, the composition of microbial communities was largely site specific and included variability in relative abundance of OHCB. Reduction in protozoan grazing had little effect on prokaryotic cell numbers but did lead to a decrease in the percentage of A. borkumensis 16S rRNA genes detected in clone libraries. These results underline the complexity of marine oil-degrading microbial communities and cast further doubt on the feasibility of bioaugmentation practices for use in a broad range of geographical locations.


Assuntos
Bactérias/classificação , Eucariotos/classificação , Consórcios Microbianos , Petróleo/microbiologia , Alcanivoraceae/genética , Alcanivoraceae/isolamento & purificação , Alcanivoraceae/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Biodegradação Ambiental , Cilióforos/classificação , Cilióforos/isolamento & purificação , Cilióforos/metabolismo , Eucariotos/isolamento & purificação , Eucariotos/metabolismo , Europa (Continente) , Mar Mediterrâneo , Mar do Norte , Oceanos e Mares , Filogenia , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética
3.
Microb Ecol ; 60(1): 180-91, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20393846

RESUMO

Protozoan grazers play an important role in controlling the density of crude-oil degrading marine communities as has been evidenced in a number of microcosm experiments. However, small bioreactors contain a low initial titre of protozoa and the growth of hydrocarbon-depleting bacteria is accompanied by the fast depletion of mineral nutrients and oxygen, which makes microcosms rather unsuitable for simulating the sequence of events after the oil spill in natural seawater environment. In the present study, the population dynamics of marine protozoan community have been analysed in a 500 l mesocosm experiment involving bioaugmented oil booms that contained oil sorbents and slow-release fertilisers. A significant increase in numbers of marine flagellates and ciliates on biofilms of oil-degrading microbes was microscopically observed as early as 8 days after the start of the experiment, when protozoa exhibited a population density peak making up to 3,000 cells ml(-1). Further, the protozoan density varied throughout the experiment, but never dropped below 80 cells ml(-1). An 18S rRNA gene-based fingerprinting analysis revealed several changes within the eukaryotic community over the whole course of the experiment. Initial growth of flagellates and small ciliates was followed by a predominance of larger protozoa. According to microscopic observations and SSU rRNA molecular analyses, most predominant were the ciliates belonging to Euplotidae and Scuticociliatia. This is the first study to characterise the eukaryotic communities specifically in a large-scale oil bioremediation trial using both microscopy-based and several molecular techniques.


Assuntos
Cilióforos/isolamento & purificação , Dinoflagellida/isolamento & purificação , Petróleo/microbiologia , Água do Mar/microbiologia , Biodegradação Ambiental , Cilióforos/genética , Cilióforos/crescimento & desenvolvimento , Impressões Digitais de DNA , Dinoflagellida/genética , Dinoflagellida/crescimento & desenvolvimento , Filogenia , RNA de Protozoário/genética , RNA Ribossômico 18S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA