RESUMO
The emerging coronavirus disease 2019 (COVID-19) outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread worldwide, resulting in global public health emergencies and economic crises. In the present study, a noninfectious and biosafety level 2 (BSL2)-compatible SARS-CoV-2 replicon expressing a nano luciferase (nLuc) reporter was constructed in a bacterial artificial chromosomal (BAC) vector by reverse genetics. The nLuc reporter is highly sensitive, easily quantifiable, and high throughput adaptable. Upon transfecting the SARS-CoV-2 replicon BAC plasmid DNA into Vero E6 cells, we could detect high levels of nLuc reporter activity and viral RNA transcript, suggesting the replication of the replicon. The replicon replication was further demonstrated by the findings that deleting nonstructural protein 15 or mutating its catalytic sites significantly reduced replicon replication, whereas providing the nucleocapsid protein in trans enhanced replicon replication in a dose-dependent manner. Finally, we showed that remdesivir, a U.S. Food and Drug Administration-approved antiviral drug, significantly inhibited the replication of the replicon, providing proof of principle for the application of our replicon as a useful tool for developing antivirals. Taken together, this study established a sensitive and BSL2-compatible reporter system in a single BAC plasmid for investigating the functions of SARS-CoV-2 proteins in viral replication and evaluating antiviral compounds. This should contribute to the global effort to combat this deadly viral pathogen. IMPORTANCE The COVID-19 pandemic caused by SARS-CoV-2 is having a catastrophic impact on human lives. Combatting the pandemic requires effective vaccines and antiviral drugs. In the present study, we developed a SARS-CoV-2 replicon system with a sensitive and easily quantifiable reporter. Unlike studies involving infectious SARS-CoV-2 virus that must be performed in a biosafety level 3 (BSL3) facility, the replicon is noninfectious and thus can be safely used in BSL2 laboratories. The replicon will provide a valuable tool for testing antiviral drugs and studying SARS-CoV-2 biology.
Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Avaliação Pré-Clínica de Medicamentos , Proteínas de Fluorescência Verde/metabolismo , Replicon , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , COVID-19/virologia , Chlorocebus aethiops , Proteínas de Fluorescência Verde/genética , Células HEK293 , Ensaios de Triagem em Larga Escala , HumanosRESUMO
Zn serves as a powerful feed additive to reduce post-weaning diarrhoea in pigs. However, the mechanisms responsible for Zn-associated effects on the adaptive immune responses following feeding of a very high dosage of Zn remain elusive. In this study, we examined the T-cell response in gut-associated lymphatic tissues of seventy-two weaned piglets. Piglets received diets with 57 mg Zn/kg (low Zn concentration, LZn), 164 mg Zn/kg (medium Zn concentration, MZn) or 2425 mg Zn/kg (high Zn concentration, HZn) mg Zn/kg feed for 1, 2 or 4 weeks. We observed that feeding the HZn diet for 1 week increased the level of activated T-helper cells (CD4+ and CD8α dim) compared with feeding MZn and LZn (P<0·05). In addition, we observed higher transcript amounts of interferon γ and T-box 21 (TBET) in the HZn group compared with the MZn and LZn groups (P<0·05). A gene set enrichment analysis revealed an over-representation of genes associated with 'cytokine signalling in immune system'. Remarkably, feeding of a very high Zn dosage led to a switch in the immune response after 2 weeks. We detected higher relative cell counts of CD4+CD25high regulatory T-helper cells (P<0·05) and a higher expression of forkhead box P3 (FOXP3) transcripts (P<0·05). After 4 weeks of feeding a high-dosage Zn diet, the relative CD4+ T-cell count (P<0·05) and the relative CD8ß + T-cell count (P<0·1) were reduced compared with the MZn group. We hypothesise that after 1 week the cellular T-helper 1 response is switched on and after 2 weeks it is switched off, leading to decreased numbers of T-cells.
Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Tecido Linfoide/metabolismo , Zinco/farmacologia , Ração Animal , Animais , Citocinas/metabolismo , Dieta , Feminino , Regulação da Expressão Gênica , Sistema Imunitário , Intestinos/patologia , Leucócitos/efeitos dos fármacos , Tecido Linfoide/efeitos dos fármacos , Masculino , Micronutrientes/química , Análise de Sequência de RNA , Sus scrofa , Suínos , Células Th1/efeitos dos fármacos , Desmame , Óxido de Zinco/químicaRESUMO
BACKGROUND: Porcine epidemic diarrhea virus (PEDV) is a highly contagious virus infecting pigs of all ages with high morbidity and mortality among newborn piglets. Currently, there is no effective vaccine available to protect the pigs from PEDV. The N-terminal subunit of spike protein (S1) is responsible for virus binding to the cellular receptor and contains a number of neutralizing antibody epitopes. Thus, we expressed and produced recombinant S1 protein to protect newborn piglets by immunization of sows. METHODS: Affinity tagged PEDV S1 protein was expressed in a secretory form in yeast, insect and mammalian cells to identify the most suitable production system. Purified recombinant protein was analysed by SDS-PAGE, Western blot and deglycosylation assay. A pregnant sow was intramuscularly immunized three times with adjuvanted recombinant protein prior to farrowing. PEDV-specific immune responses in sera and colostrum of the sow and piglets were assayed by ELISA and virus neutralization assays. Piglets were challenged orally with PEDV, and clinical parameters were monitored for 6 days post-challenge. RESULTS AND CONCLUSION: Of three eukaryotic expression systems tested (yeast, insect-cell, and mammalian), expression by HEK-293 T cells gave the highest yield of protein that was N-glycosylated and was the most appropriate candidate for vaccination. Administration of the subunit vaccine in a sow resulted in induction of S1-specific IgG and IgA that were passively transferred to the suckling piglets. Also, high virus neutralization titres were observed in the serum of the vaccinated sow and its piglets. After PEDV challenge, piglets born to the vaccinated sow exhibited less severe signs of disease and significantly lower mortality compared to the piglets of a control sow. However, there were no significant differences in diarrhea, body weight and virus shedding. Thus, vaccination with S1 subunit vaccine failed to provide complete protection to suckling piglets after challenge exposure, and further improvements are needed for the development of a subunit vaccine that fully protects against PEDV infection.
Assuntos
Antígenos Virais/imunologia , Infecções por Coronavirus/veterinária , Vírus da Diarreia Epidêmica Suína/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Virais/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Neutralizantes/análise , Anticorpos Antivirais/análise , Antígenos Virais/genética , Colostro/imunologia , Infecções por Coronavirus/patologia , Infecções por Coronavirus/prevenção & controle , Ensaio de Imunoadsorção Enzimática , Feminino , Injeções Intramusculares , Testes de Neutralização , Vírus da Diarreia Epidêmica Suína/genética , Gravidez , Soro/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Suínos , Resultado do Tratamento , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genéticaRESUMO
Immunoglobulins cannot cross the placenta in pregnant sows. Neonatal pigs are therefore agammaglobulinemic at birth and, although immunocompetent, they cannot mount rapid immune responses at systemic and mucosal sites. Their survival depends directly on the acquisition of maternal immunity via colostrum and milk. Protection by maternal immunity is mediated by a number of factors, including specific systemic humoral immunity, involving mostly maternal IgG transferred from blood to colostrum and typically absorbed within the first 36 h of life. Passive mucosal immunity involves local humoral immunity, including the production of secretory IgA (sIgA), which is transferred principally via milk until weaning. The mammary gland (MG) produces sIgA, which is, then secreted into the milk via the poly-Ig receptor (pIgR) of epithelial cells. These antibodies are produced in response to intestinal and respiratory antigens, including pathogens and commensal organisms. Protection is also mediated by cellular immunity, which is transferred via maternal cells present in mammary secretions. The mechanisms underlying the various immunological links between MG and the mucosal surfaces involve hormonally regulated addressins and chemokines specific to these compartments. The enhancement of colostrogenic immunity depends on the stimulation of systemic immunity, whereas the enhancement of lactogenic immunity depends on appropriate stimulation at induction sites, an increase in cell trafficking from the gut and upper respiratory tract to the MG and, possibly, enhanced immunoglobulin production at the effector site and secretion in milk. In addition, mammary secretions provide factors other than immunoglobulins that protect the neonate and regulate the development of mucosal immunity--a key element of postnatal adaptation to environmental antigens.
Assuntos
Colostro/imunologia , Imunidade Materno-Adquirida , Imunoglobulina A Secretora/metabolismo , Suínos/imunologia , Animais , Movimento Celular , Colostro/citologia , Colostro/metabolismo , Citocinas/metabolismo , Feminino , Antígenos de Histocompatibilidade Classe I/imunologia , Hormônios/imunologia , Imunidade nas Mucosas , Imunoglobulina A Secretora/imunologia , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/imunologia , Glândulas Mamárias Animais/metabolismo , Gravidez , Receptores Fc/imunologia , Receptores de Imunoglobulina Polimérica/imunologia , Receptores de Imunoglobulina Polimérica/metabolismo , Suínos/embriologiaRESUMO
The prevention of infectious diseases of animals by vaccination has been routinely practiced for decades and has proved to be one of the most cost-effective methods of disease control. However, since the pioneering work of Pasteur in the 1880s, the composition of veterinary vaccines has changed very little from a conceptual perspective and this has, in turn, limited their application in areas such as the control of chronic infectious diseases. New technologies in the areas of vaccine formulation and delivery as well as our increased knowledge of disease pathogenesis and the host responses associated with protection from disease offer promising alternatives for vaccine formulation as well as targets for the prevention of bacterial disease. These new vaccines have the potential to lessen our reliance on antibiotics for disease control, but will only reach their full potential when used in combination with other intervention strategies.
Assuntos
Antibacterianos/uso terapêutico , Infecções Bacterianas/veterinária , Vacinas Bacterianas/administração & dosagem , Controle de Doenças Transmissíveis/métodos , Farmacorresistência Bacteriana , Vacinação/veterinária , Animais , Antibacterianos/efeitos adversos , Infecções Bacterianas/prevenção & controle , Contagem de Colônia Microbiana/veterinária , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana/veterinária , Vacinação/métodos , Vacinação/normasRESUMO
Pertussis continues to be a significant cause of morbidity and mortality in infants and young children worldwide. Methods to control the disease are based on vaccination with either whole-cell or acellular vaccines or treatment with antibiotics. However, despite worldwide vaccination infants are still at the highest risk for the disease. Here we used our newly developed newborn-piglet model to investigate whether transfer of maternal immunity can protect newborn piglets against infection with Bordetella pertussis. Pregnant sows were vaccinated with heat-inactivated B. pertussis or treated with saline (controls). Newborn piglets were allowed to suckle colostrum and milk for 4 to 5 days before they were challenged with 5 x 10(9) CFU of bacteria intrapulmonarily. Elevated levels of B. pertussis-specific secretory immunoglobulin A (S-IgA) and IgG antibodies were found in the colostrum and serum of vaccinated sows but not in those of control sows. Subsequently, significant levels of specific IgG and S-IgA were detected in the serum and bronchoalveolar lavage fluid of piglets born to vaccinated sows. Following infection with 5 x 10(9) CFU of B. pertussis, clinical symptoms, pathological alterations, and bacterial shedding were significantly reduced in piglets that had received passively transferred immunity. Thus, our results demonstrate that maternal immunization might represent an alternative approach to provide protection against pertussis in young infants.