Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 95(9): 4381-4389, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36802535

RESUMO

Discovery of sustainable and benign-by-design drugs to combat emerging health pandemics calls for new analytical technologies to explore the chemical and pharmacological properties of Nature's unique chemical space. Here, we present a new analytical technology workflow, polypharmacology-labeled molecular networking (PLMN), where merged positive and negative ionization tandem mass spectrometry-based molecular networking is linked with data from polypharmacological high-resolution inhibition profiling for easy and fast identification of individual bioactive constituents in complex extracts. The crude extract of Eremophila rugosa was subjected to PLMN analysis for the identification of antihyperglycemic and antibacterial constituents. Visually easy-interpretable polypharmacology scores and polypharmacology pie charts as well as microfractionation variation scores of each node in the molecular network provided direct information about each constituent's activity in the seven assays included in this proof-of-concept study. A total of 27 new non-canonical nerylneryl diphosphate-derived diterpenoids were identified. Serrulatane ferulate esters were shown to be associated with antihyperglycemic and antibacterial activities, including some showing synergistic activity with oxacillin in clinically relevant (epidemic) methicillin-resistant Staphylococcus aureus strains and some showing saddle-shaped binding to the active site of protein-tyrosine phosphatase 1B. PLMN is scalable in the number and types of assays included and thus holds potential for a paradigm shift toward polypharmacological natural-products-based drug discovery.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Polifarmacologia , Fluxo de Trabalho , Antibacterianos/farmacologia , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química
2.
Plant J ; 108(2): 555-578, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34324744

RESUMO

Eremophila is the largest genus in the plant tribe Myoporeae (Scrophulariaceae) and exhibits incredible morphological diversity across the Australian continent. The Australian Aboriginal Peoples recognize many Eremophila species as important sources of traditional medicine, the most frequently used plant parts being the leaves. Recent phylogenetic studies have revealed complex evolutionary relationships between Eremophila and related genera in the tribe. Unique and structurally diverse metabolites, particularly diterpenoids, are also a feature of plants in this group. To assess the full dimension of the chemical space of the tribe Myoporeae, we investigated the metabolite diversity in a chemo-evolutionary framework applying a combination of molecular phylogenetic and state-of-the-art computational metabolomics tools to build a dataset involving leaf samples from a total of 291 specimens of Eremophila and allied genera. The chemo-evolutionary relationships are expounded into a systematic context by integration of information about leaf morphology (resin and hairiness), environmental factors (pollination and geographical distribution), and medicinal properties (traditional medicinal uses and antibacterial studies), augmenting our understanding of complex interactions in biological systems.


Assuntos
Evolução Biológica , Eremophila (Planta)/química , Eremophila (Planta)/fisiologia , Adaptação Biológica , Antibacterianos/química , Antibacterianos/farmacologia , Austrália , Diterpenos/química , Medicina Tradicional , Metabolômica/métodos , Myoporaceae/química , Myoporaceae/fisiologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Folhas de Planta/química , Folhas de Planta/metabolismo , Polinização , Resinas Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA