Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Plant Microbe Interact ; 17(8): 921-30, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15305613

RESUMO

TGBp1, TGBp2, and TGBp3, three plant virus movement proteins encoded by the "triple gene block" (TGB), may act in concert to facilitate cell-to-cell transport of viral RNA genomes. Transient expression of Potato mop-top virus (genus Pomovirus) movement proteins was used as a model to reconstruct interactions between TGB proteins. In bombarded epidermal cells of Nicotiana benthamiana, green fluorescent protein (GFP)-TGBp1 was distributed uniformly. However, in the presence of TGBp2 and TGBp3, GFP-TGBp1 was directed to intermediate bodies at the cell periphery, and to cell wall-embedded punctate bodies. Moreover, GFP-TGBp1 migrated into cells immediately adjacent to the bombarded cell. These data suggest that TGBp2 and TGBp3 mediate transport of GFP-TGBp1 to and through plasmodesmata. Mutagenesis of TGBp1 suggested that the NTPase and helicase activities of TGBp1 were not required for its transport to intermediate bodies directed by TGBp2 and TGBp3, but these activities were essential for the protein association with cell wall-embedded punctate bodies and translocation of TGBpl to neighboring cells. The C-terminal region of TGBp1 was critical for trafficking mediated by TGBp2 and TGBp3. Mutation analysis also suggested an involvement of the TGBp2 C-terminal region in interactions with TGBp1.


Assuntos
Vírus de Plantas/genética , Solanum tuberosum/virologia , Proteínas Virais/genética , Expressão Gênica , Microscopia Confocal , Mutação , Epiderme Vegetal/citologia , Epiderme Vegetal/ultraestrutura , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Solanum tuberosum/genética , Nicotiana/genética , Nicotiana/metabolismo , Proteínas Virais/metabolismo
2.
J Gen Virol ; 84(Pt 4): 1001-1005, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12655103

RESUMO

Full-length genomic cDNA clones of the Swedish isolate of Potato mop-top virus (PMTV) were transcribed in vitro using T7 RNA polymerase. The combination of RNA 1, 2 and 3 synthesized in the presence of m(7)GpppG cap analogue was infectious when inoculated onto Nicotiana benthamiana plants. Also, the combination of RNA 1 (encodes the viral replicase) with RNA 3 [encodes the triple gene block proteins and a small cysteine-rich protein (CRP)] was infectious and both RNAs moved systemically in N. benthamiana plants in the absence of RNA 2, which encodes the coat protein (CP). However, the yellow mosaic symptoms that typically developed following PMTV infection with all three RNAs were not observed in plants infected with RNA 1+RNA 3. Site-directed mutagenesis experiments revealed that expression of the putative CRP was not required for systemic infection and symptom induction in N. benthamiana. These data show that PMTV represents an example of a multipartite virus capable of establishing systemic infection without the CP-encoding RNA, and also without the putative CRP.


Assuntos
Proteínas do Capsídeo/genética , Nicotiana/virologia , Vírus de Plantas/metabolismo , RNA Viral/fisiologia , Cisteína , DNA Complementar , Movimento , Vírus de Plantas/genética , Transcrição Gênica
3.
J Gen Virol ; 83(Pt 5): 1201-1209, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11961276

RESUMO

Resistance to the pomovirus Potato mop-top virus (PMTV) was studied in potato (Solanum tuberosum cv. Saturna) and Nicotiana benthamiana transformed with the coat protein (CP) gene of PMTV. The incidence of PMTV infections was reduced in tubers of the CP-transgenic potatoes grown in the field in soil infested with the viruliferous vector, Spongospora subterranea. However, in those tubers that were infected, all three virus RNAs were detected and virus titres were high. The CP-transgenic N. benthamiana plants were inoculated with PMTV using two methods. Following mechanical inoculation of leaves, no RNA 3 (the CP-encoding RNA homologous to the transgene) was detected in leaves, but in some plants low amounts of RNA 3 were detected in roots; RNA 2 was readily detected in leaves and roots of several plants. Inoculation of roots using viruliferous S. subterranea resulted in infection of roots in all plants and the three PMTV RNAs were detected. However, no systemic movement of PMTV from roots to the above-ground parts was observed, indicating a novel expression of resistance. These data indicate that the CP gene-mediated resistance to PMTV specifically restricts accumulation of PMTV RNA 3, and is more effective in leaves than roots. Furthermore, expression of resistance is different depending on whether leaves or roots are inoculated. Data do not exclude the possibility that both a protein-mediated and an RNA-mediated resistance mechanism are involved.


Assuntos
Capsídeo/genética , Genes Virais , Doenças das Plantas/virologia , Vírus de Plantas/genética , Solanum tuberosum/virologia , Fenótipo , Plantas Geneticamente Modificadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA