Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Metabolism ; 93: 33-43, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30664851

RESUMO

BACKGROUND: CEACAM1 regulates insulin sensitivity by promoting insulin clearance. Accordingly, global C57BL/6J.Cc1-/- null mice display hyperinsulinemia due to impaired insulin clearance at 2 months of age, followed by insulin resistance, steatohepatitis, visceral obesity and leptin resistance at 6 months. The study aimed at investigating the primary role of hepatic CEACAM1 in insulin and lipid homeostasis independently of its metabolic effect in extra-hepatic tissues. METHODS: Liver-specific C57BL/6J.AlbCre+Cc1fl/fl mice were generated and their metabolic phenotype was characterized by comparison to that of their littermate controls at 2-9 months of age, using hyperinsulinemic-euglycemic clamp analysis and indirect calorimetry. The effect of hyperphagia on insulin resistance was assessed by pair-feeding experiments. RESULTS: Liver-specific AlbCre+Cc1fl/fl mutants exhibited impaired insulin clearance and hyperinsulinemia at 2 months, followed by hepatic insulin resistance (assessed by hyperinsulinemic-euglycemic clamp analysis) and steatohepatitis at ~ 7 months of age, at which point visceral obesity and hyperphagia developed, in parallel to hyperleptinemia and blunted hypothalamic STAT3 phosphorylation in response to an intraperitoneal injection of leptin. Hyperinsulinemia caused hypothalamic insulin resistance, followed by increased fatty acid synthase activity, which together with defective hypothalamic leptin signaling contributed to hyperphagia and reduced physical activity. Pair-feeding experiment showed that hyperphagia caused systemic insulin resistance, including blunted insulin signaling in white adipose tissue and lipolysis, at 8-9 months of age. CONCLUSION: AlbCre+Cc1fl/fl mutants provide an in vivo demonstration of the key role of impaired hepatic insulin clearance and hyperinsulinemia in the pathogenesis of secondary hepatic insulin resistance independently of lipolysis. They also reveal an important role for the liver-hypothalamic axis in the regulation of energy balance and subsequently, systemic insulin sensitivity.


Assuntos
Antígeno Carcinoembrionário/genética , Hiperinsulinismo/complicações , Resistência à Insulina , Fígado/metabolismo , Animais , Técnica Clamp de Glucose , Hiperfagia/complicações , Hipotálamo/metabolismo , Lipólise , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
2.
J Biol Chem ; 291(21): 11124-32, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27002145

RESUMO

Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) promotes hepatic insulin clearance. Consistently, mice with null mutation of Ceacam1 (Cc1(-/-)) exhibit impaired insulin clearance with increased lipid production in liver and redistribution to white adipose tissue, leading to visceral obesity at 2 months of age. When the mutation is propagated on the C57/BL6J genetic background, total fat mass rises significantly with age, and glucose intolerance and systemic insulin resistance develop at 6 months of age. This study was carried out to determine the mechanisms underlying the marked increase in total fat mass in 6-month-old mutants. Indirect calorimetry analysis showed that Cc1(-/-) mice develop hyperphagia and a significant reduction in physical activity, in particular in the early hours of the dark cycle, during which energy expenditure is only slightly lower than in wild-type mice. They also exhibit increased triglyceride accumulation in skeletal muscle, due in part to incomplete fatty acid ß-oxidation. Mechanistically, hypothalamic leptin signaling is reduced, as demonstrated by blunted STAT3 phosphorylation in coronal sections in response to an intracerebral ventricular injection of leptin. Hypothalamic fatty-acid synthase activity is also elevated in the mutants. Together, the data show that the increase in total fat mass in Cc1(-/-) mice is mainly attributed to hyperphagia and reduced spontaneous physical activity. Although the contribution of the loss of CEACAM1 from anorexigenic proopiomelanocortin neurons in the arcuate nucleus is unclear, leptin resistance and elevated hypothalamic fatty-acid synthase activity could underlie altered energy balance in these mice.


Assuntos
Antígeno Carcinoembrionário/genética , Antígeno Carcinoembrionário/metabolismo , Leptina/metabolismo , Obesidade/etiologia , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Moléculas de Adesão Celular/deficiência , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Metabolismo Energético , Ácidos Graxos/metabolismo , Deleção de Genes , Hiperfagia/etiologia , Hiperfagia/genética , Hiperfagia/metabolismo , Hipotálamo/metabolismo , Resistência à Insulina , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Mutação , Obesidade/genética , Obesidade/metabolismo , Pró-Opiomelanocortina/metabolismo , Transdução de Sinais , Triglicerídeos/metabolismo
3.
Nutr Metab (Lond) ; 12: 19, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26045713

RESUMO

Abdominal obesity is a major risk factor for insulin resistance, type 2 diabetes and cardiovascular diseases. Dietary fat induces insulin resistance in humans and rodents. The current study investigates whether a Chlorogenic acid/Chromium III supplement rescues obesity and insulin resistance caused by high-fat feeding of male C57BL/6 J mice for 7 weeks. Administering an oral daily dose of this supplement in the last 3 weeks of feeding reversed diet-induced body weight gain and insulin resistance, assessed by hyperglycemia, glucose intolerance and insulin intolerance. Indirect calorimetry analysis revealed that this effect is mediated at least partly, by increasing energy expenditure and spontaneous locomoter activity. These findings underscore the important role that chlorogenic acid and chromium play in maintaining glucose metabolism and insulin response in mice fed a high-fat diet.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA