Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 862: 172636, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491405

RESUMO

Several studies have reported that CORM-3, a water-soluble carbon monoxide releasing molecule, elicits cardioprotection against myocardial infarction but the mechanism remains to be investigated. Numerous reports indicate that inhibition of pH regulators, the Na+/H+ exchanger (NHE) and Na+/HCO3- symporter (NBC), protect cardiomyocytes from hypoxia/reoxygenation injury by delaying the intracellular pH (pHi) recovery at reperfusion. Our goal was to explore whether CORM-3-mediated cytoprotection involves the modulation of pH regulation. When added at reoxygenation, CORM-3 (50 µM) reduced the mortality of cardiomyocytes exposed to 3 h of hypoxia and 2 h of reoxygenation in HCO3--buffered solution. This effect was lost when using inactive iCORM-3, which is depleted of CO and used as control, thus implicating CO as the mediator of this cardioprotection. Interestingly, the cardioprotective effect of CORM-3 was abolished by switching to a bicarbonate-free medium. This effect of CORM-3 was also inhibited by 5-hydroxydecanoate, a mitochondrial ATP-dependent K+ (mKATP) channel inhibitor (500 µM) or PD098059, a MEK1/2 inhibitor (10 µM). In additional experiments and in the absence of hypoxia-reoxygenation, intracellular pH was monitored in cardiomyocytes exposed to cariporide to block NHE activity. CORM-3 inhibited alkalinisation and this effect was blocked by PD098059 and 5-HD. In conclusion, CORM-3 protects the cardiomyocyte against hypoxia-reoxygenation injury by inhibiting a bicarbonate transporter at reoxygenation, probably the Na+/HCO3- symporter. This cardioprotective effect of CORM-3 requires the activation of mKATP channels and the activation of MEK1/2.


Assuntos
Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Substâncias Protetoras/farmacologia , Animais , Monóxido de Carbono/metabolismo , Hipóxia Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Meios de Cultura/química , Ácidos Decanoicos/farmacologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Flavonoides/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Hidroxiácidos/farmacologia , Canais KATP/antagonistas & inibidores , Canais KATP/metabolismo , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/metabolismo , Masculino , Camundongos , Mitocôndrias/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/patologia , Compostos Organometálicos/uso terapêutico , Cultura Primária de Células , Substâncias Protetoras/uso terapêutico
2.
Shock ; 41(2): 154-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24434418

RESUMO

BACKGROUND: Therapeutic hypothermia was shown to facilitate resumption of spontaneous circulation when instituted during cardiac arrest. Here, we investigated whether it directly improved the chance of successful resuscitation independently of adrenaline administration in rabbits. We further evaluated the direct effect of hypothermia on vascular function in vitro. METHODS: In a first set of experiments, four groups of anesthetized rabbits were submitted to 15 min of cardiac arrest and subsequent cardiopulmonary resuscitation (CPR). The "control" group underwent CPR with only cardiac massage and defibrillation attempts. Two other groups received cold or normothermic saline infusion during CPR (20 mL/kg of NaCl 0.9% at 4°C or 38°C, respectively). In a last group, the animals received adrenaline (15 µg/kg intravenously) during CPR. In a second set of experiments, we evaluated at 32°C vs. 38°C the vascular function of aortic rings withdrawn from healthy rabbits or after cardiac arrest. RESULTS: In the first set of experiments, cardiac massage efficiency was improved by adrenaline but neither by hypothermic nor normothermic saline administration. Resumption of spontaneous circulation was observed in five of eight animals after adrenaline as compared with none of eight in other groups. Defibrillation rates were conversely similar among groups (7/8 or 8/8). In the second set of experiments, in vitro hypothermia (32°C) was not able to prevent the dramatic alteration of vascular function observed after cardiac arrest. It also did not directly modify vasocontractile or the vasodilating functions in healthy conditions. CONCLUSION: In rabbits, hypothermia did not exert a direct hemodynamic or vascular effect that might explain its beneficial effect during CPR.


Assuntos
Reanimação Cardiopulmonar/métodos , Epinefrina/uso terapêutico , Parada Cardíaca/terapia , Hipotermia Induzida , Animais , Hemodinâmica/efeitos dos fármacos , Masculino , Coelhos , Vasoconstrição , Vasodilatação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA