Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37446858

RESUMO

The present study investigated the antioxidant, antibacterial, antiviral and anti-inflammatory activities of different aerial parts (flowers, leaves and seeds) of Datura stramonium. The plant material was extracted with 80% methanol for about 24 h. The sensitivity to microorganisms analysis was performed by the microdilution technique. Antioxidant tests were performed by scavenging the DPPH and ABTS radicals, and by FRAP assay. Anti-inflammatory activity was evaluated through the inhibition of nitric oxide production in activated macrophage RAW 264.7 cells. Cell viability was assessed with an MTT assay. Results show that the flower extract revealed a powerful antimicrobial capacity against Gram-positive bacteria and strong antioxidant and anti-inflammatory activities. No significant cytotoxicity to activated macrophages was recorded. High resolution electrospray ionization mass spectrometry and nuclear magnetic resonance analysis identified two molecules with important anti-inflammatory effects: 12α-hydroxydaturametelin B and daturametelin B. Molecular docking analysis with both pro-inflammatory agents tumor necrosis factor alpha and interleukin-6 revealed that both compounds showed good binding features with the selected target proteins. Our results suggest that D. stramonium flower is a promising source of compounds with potential antioxidant, antibacterial, and anti-inflammatory activities. Isolated withanolide steroidal lactones from D. stramonium flower extract with promising anti-inflammatory activity have therapeutic potential against inflammatory disorders.


Assuntos
Datura stramonium , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Antioxidantes/química , Flores/química , Anti-Inflamatórios/química , Antibacterianos/química
2.
Appl Biochem Biotechnol ; 187(4): 1460-1474, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30251231

RESUMO

An endophytic Bacillus amyloliquefaciens strain called C5, able to produce biosurfactant lipopeptides with a broad antibacterial activity spectrum, has been isolated from the roots of olive tree. Optimization of antibacterial activity was undertaken using grape seed flour (GSF) substrate at 0.02, 0.2, and 2% (w/v) in M9 medium. Strain C5 exhibited optimal growth and antimicrobial activity (MIC value of 60 µg/ml) when incubated in the presence of 0.2% GSF while lipopeptide production culminated at 2% GSF. Thin layer chromatography analysis of lipopeptide extract revealed the presence of at least three active spots at Rf 0.35, 0.59, and 0.72 at 0.2% GSF. Data were similar to those obtained in LB-rich medium. MALDI-TOF/MS analysis of lipopeptide extract obtained from 0.2% GSF substrate revealed the presence of surfactin and bacillomycin D. These results show that GSF could be used as a low-cost culture medium supplement for optimizing the production of biosurfactants by strain C5.


Assuntos
Bacillus amyloliquefaciens/metabolismo , Biotecnologia/métodos , Farinha , Lipopeptídeos/biossíntese , Lipopeptídeos/farmacologia , Sementes/química , Vitis/química , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Testes de Sensibilidade Microbiana
3.
Appl Microbiol Biotechnol ; 101(18): 6993-7006, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28766033

RESUMO

The present study aimed to investigate the anti-Candida activity of ten essential oils (EOs) and to evaluate their potential synergism with conventional drugs. The effect on secreted aspartic protease (SAP) activity and the mechanism of action were also explored. The antifungal properties of essential oils were investigated using standard micro-broth dilution assay. Only Cinnamomum verum, Thymus capitatus, Syzygium aromaticum, and Pelargonium graveolens exhibited a broad spectrum of activity against a variety of pathogenic Candida strains. Chemical composition of active essential oils was performed by gas chromatography-mass spectrometry (GC-MS). Synergistic effect was observed with the combinations C. verum/fluconazole and P. graveolens/fluconazole, with FIC value 0.37. Investigation of the mechanism of action revealed that C. verum EO reduced the quantity of ergosterol to 83%. A total inhibition was observed for the combination C. verum/fluconazole. However, P. graveolens EO may disturb the permeability barrier of the fungal cell wall. An increase of MIC values of P. graveolens EO and the combination with fluconazole was observed with osmoprotectants (sorbitol and PEG6000). Furthermore, the combination with fluconazole may affect ergosterol biosynthesis and disturb fatty acid homeostasis in C. albicans cells as the quantity of ergosterol and oleic acid was reduced to 52.33 and 72%, respectively. The combination of P. graveolens and C. verum EOs with fluconazole inhibited 78.31 and 64.72% SAP activity, respectively. To our knowledge, this is the first report underlying the mechanism of action and the inhibitory effect of SAP activity of essential oils in synergy with fluconazole. Naturally occurring phytochemicals C. verum and P. graveolens could be effective candidate to enhance the efficacy of fluconazole-based therapy of C. albicans infections.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Cinnamomum zeylanicum/química , Fluconazol/farmacologia , Óleos Voláteis/farmacologia , Pelargonium/química , Óleos de Plantas/farmacologia , Antifúngicos/química , Sinergismo Farmacológico , Ergosterol/análise , Óleos Voláteis/química , Óleos de Plantas/química
4.
Appl Biochem Biotechnol ; 181(2): 650-666, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27639392

RESUMO

A strain producing chitinase, isolated from potato stem tissue, was identified as Bacillus licheniformis by biochemical properties and 16S RNA sequence analysis. Statistical experimental designs were used to optimize nine independent variables for chitinase production by B. licheniformis AT6 strain in submerged fermentation. Using Plackett-Burman design, (NH4)2SO4, MgSO4.7H2O, colloidal chitin, MnCl2 2H2O, and temperature were found to influence chitinase production significantly. According to Box-Behnken response surface methodology, the optimal fermentation conditions allowing maximum chitinase production were (in gram per liter): (NH4)2SO4, 7; K2HPO4, 1; NaCl, 1; MgSO4.7H2O, 0.1; yeast extract, 0.5; colloidal chitin, 7.5; MnCl2.2H2O, 0.2; temperature 35 °C; pH medium 7. The optimization strategy led to a 10-fold increase in chitinase activity (505.26 ± 22.223 mU/mL versus 50.35 ± 19.62 mU/mL for control basal medium). A major protein band with a molecular weight of 61.9 kDa corresponding to chitinase activity was clearly detected under optimized conditions. Chitinase activity produced in optimized medium mainly releases N-acetyl glucosamine (GlcNAc) monomer from colloidal chitin. This enzyme also acts as an exochitinase with ß-N-acetylglucosaminidase. These results suggest that B. licheniformis AT6 secreting exochitinase is highly efficient in GlcNAc production which could in turn be envisaged as a therapeutic agent or as a conservator against the alteration of several ailments.


Assuntos
Acetilglucosamina/biossíntese , Bacillus licheniformis/classificação , Bacillus licheniformis/metabolismo , Meios de Cultura/química , Meios de Cultura/metabolismo , Solanum tuberosum/microbiologia , Acetilglucosamina/isolamento & purificação , Hexosaminidases/química , Hexosaminidases/isolamento & purificação , Hexosaminidases/metabolismo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA