Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-34339956

RESUMO

Ylang-ylang (YY) essential oil (EO) is distilled from the fresh-mature flowers of the Annonaceae family tropical tree Cananga odorata [Lam.] Hook. f. & Thomson, and is widely used in perfume and cosmetic industries for its fragrant character. Herein, two different metabolomic profiles obtained using high-performance thin-layer chromatography (HPTLC), applying different stains, namely 2,2-diphenyl-1-picrylhydrazyl (DPPH·) and p-anisaldehyde, were used for discrimination of 52 YY samples across geographical origins and distillation grades. The first profile is developed using the DPPH· stain based on the radical scavenging activity (RSA) of YY EOs. Results of the HPTLC-DPPH· assay confirmed that RSA of YY EOs is in proportion to the length of distillation times. Major components contributing to the RSA of YY EOs were tentatively identified as germacrene D and α-farnesene, eugenol and linalool, by gas chromatography-mass spectrometry (GC-MS) and GC-flame ionisation detector (GC-FID). The second profile was developed using the general-purpose p-anisaldehyde stain based on the general chemical composition of YY EOs. Untargeted metabolomic discrimination of YY EOs from different geographical origins was performed based on the HPTLC-p-anisaldehyde profiles, followed by principal component analysis (PCA). A discrimination and prediction model for identification of YY distillation grade was developed using PCA and partial least squares regression (PLS) based on binned HPTLC-ultraviolet (254 nm) profiles, which was successfully applied to distillation grade determination of blended YY Complete EOs.


Assuntos
Cananga/química , Cromatografia em Camada Fina/métodos , Sequestradores de Radicais Livres/química , Óleos Voláteis/química , Óleos de Plantas/química , Compostos de Bifenilo/análise , Compostos de Bifenilo/metabolismo , Cromatografia Líquida de Alta Pressão , Destilação , Eugenol/análise , Eugenol/química , Eugenol/metabolismo , Sequestradores de Radicais Livres/metabolismo , Metabolômica , Análise Multivariada , Óleos Voláteis/metabolismo , Picratos/análise , Picratos/metabolismo , Óleos de Plantas/metabolismo , Sesquiterpenos/análise , Sesquiterpenos/química , Sesquiterpenos/metabolismo
2.
J Chromatogr Sci ; 54(2): 264-70, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26341491

RESUMO

Ultrasound-assisted headspace solid-phase microextraction (UA-HS-SPME) and hydrodistillation (HD) methods, coupled to gas chromatography-mass spectrometry (GC-MS), were used for the extraction and analysis of volatile compounds from Hypericum perforatum and Hypericum scabrum collected from two different sites in Iran. In the UA-HS-SPME method, various experimental parameters such as the type of fiber coating, sonication time, extraction time, extraction temperature and desorption time were investigated. The highest extraction efficiency was achieved by a 100-µm polydimethylsiloxane (PDMS) fiber. Consequently, 36 compounds were identified in H. perforatum and H. scabrum samples, using the UA-HS-SPME-GC-MS method, of which 14 were the same in both species. On the other hand, 57 compounds of these species were identified by the HD-GC-MS method, of which 21 were the same. The predominant constituents identified using the UA-HS-SPME method in H. perforatum included ß-caryophyllene, α-pinene, γ-cadinene, α-selinene, germacrene-D, limonene and myrcene, and in H. scabrum were α-pinene, nonane, ß-pinene and limonene. The common constituents identified by the HD-GC-MS method for H. perforatum involved germacrene-D, limonene, ß-caryophyllene, α-pinene, ß-pinene and germacrene-B, and for H. scabrum were α-pinene, ß-pinene, germacrene-D, nonane, limonene and γ-cadinene. The results about the main constituents of the examined species correspond to the findings of other researchers. Additionally, comparing UA-HS-SPME-GC-MS and HD-GC-MS methods showed that the UA-HS-SPME-GC-MS method is much faster and simpler, and it requires much less sample size and lower temperature.


Assuntos
Destilação/métodos , Hypericum/química , Extratos Vegetais/isolamento & purificação , Microextração em Fase Sólida/métodos , Cromatografia Gasosa-Espectrometria de Massas , Extratos Vegetais/química , Ultrassom
3.
J Chromatogr A ; 1406: 87-93, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26138604

RESUMO

A mechanically hard and cohesive porous fiber, with large surface area, for more strong attachment of the coating was provided by platinizing a stainless steel wire. Then, the platinized stainless steel fiber was coated with a multiwalled carbon nanotube/polyaniline (MWCNT/PANI) nanocomposite using electrophoretic deposition (EPD) method and applied for the extraction of thymol and carvacrol with direct-immersion solid-phase microextraction (DI-SPME) method followed by high-performance liquid chromatography-ultraviolet detection (HPLC-UV) quantification. To provide a larger coarse surface for the tightened attachment of coating on the fiber, a stainless steel wire was platinized using a suitable optimized EPD method. Different experimental parameters were studied and the optimal conditions were obtained as: pH of the sample solution: 2; extraction time: 60min; salt content in the sample solution: 1% w/v NaNO3; desorption time: 60min; type and volume of the desorption solvent: acetonitrile, 100µL. Under the optimized conditions, limits of detection (LODs) were 0.6 and 0.8µgmL(-1) for thymol and carvacrol, respectively. Linear dynamic range (LDR) for the calibration curves of both analytes were 1-80µgmL(-1). Relative standard deviation (RSD%, n=6) was 6.8 for thymol and 12.7 for carvacrol. The proposed fiber was successfully applied for the recovery and determination of thymol and carvacrol in thyme, savory, and honey samples.


Assuntos
Técnicas de Química Analítica/instrumentação , Técnicas de Química Analítica/métodos , Mel , Monoterpenos/isolamento & purificação , Plantas Medicinais/química , Microextração em Fase Sólida/instrumentação , Timol/isolamento & purificação , Compostos de Anilina/química , Cimenos , Limite de Detecção , Nanocompostos/química , Nanotubos de Carbono/química , Aço Inoxidável/química , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA