Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 262(Pt 1): 129884, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336328

RESUMO

Finding efficient and environmental-friendly methods to produce and chemically modify cellulose nanofibers (CNFs) remains a challenge. In this study, lactic acid (LA) treatment followed by microfluidization was employed for the isolation and functionalization of CNFs. Small amounts of HCl (0.01, 0.1, and 0.2 M) were used alongside LA to intensify cellulose hydrolysis. FTIR spectroscopy and solid-state 13C NMR confirmed the successful functionalization of CNFs with lactyl groups during isolation, while SEM, AFM, and rheological tests revealed that the addition of HCl governed the fibers' sizes and morphology. Notably, the treatment with LA and 0.2 M HCl resulted in a more efficient defibrillation, yielding smaller nanofibers sizes (62 nm) as compared to the treatment with LA or HCl alone (90 and 108 nm, respectively). The aqueous suspension of CNFs treated with LA and 0.2 M HCl showed the highest viscosity and storage modulus. LA-modified CNFs were tested as stabilizers for linseed oil/water (50/50 v/v) emulsions. Owing to the lactyl groups grafted on their surface and higher aspect ratio, CNFs produced with 0.1 and 0.2 M HCl led to emulsions with increased stability (a creaming index increase of only 3 % and 1 %, respectively, in 30 days) and smaller droplets sizes of 23.4 ± 1.2 and 35.5 ± 0.5 µm, respectively. The results showed that LA-modified CNFs are promising stabilizers for Pickering emulsions.


Assuntos
Linho , Nanofibras , Emulsões/química , Óleo de Semente do Linho , Nanofibras/química , Celulose/química , Ácido Láctico
2.
Int J Mol Sci ; 24(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37511630

RESUMO

Nanocellulose (NC) is a valuable material in tissue engineering, wound dressing, and drug delivery, but its lack of antimicrobial activity is a major drawback for these applications. In this work, basil ethanolic extract (BE) and basil seed mucilage (BSM) were used to endow nanocellulose with antibacterial activity. NC/BE and NC/BE/BSM sponges were obtained from nanocellulose suspensions and different amounts of BE and BSM after freeze-drying. Regardless of the BE or BSM content, the sponges started to decompose at a lower temperature due to the presence of highly volatile active compounds in BE. A SEM investigation revealed an opened-cell structure and nanofibrillar morphology for all the sponges, while highly impregnated nanofibers were observed by SEM in NC/BE sponges with higher amounts of BE. A quantitative evaluation of the porous morphology by microcomputer tomography showed that the open porosity of the sponges varied between 70% and 82%, being lower in the sponges with higher BE/BSM content due to the impregnation of cellulose nanofibers with BE/BSM, which led to smaller pores. The addition of BE increased the specific compression strength of the NC/BE sponges, with a higher amount of BE having a stronger effect. A slight inhibition of S. aureus growth was observed in the NC/BE sponges with a higher amount of BE, and no effect was observed in the unmodified NC. In addition, the NC/BE sponge with the highest amount of BE and the best antibacterial effect in the series showed no cytotoxic effect and did not interfere with the normal development of the L929 cell line, similar to the unmodified NC. This work uses a simple, straightforward method to obtain highly porous nanocellulose structures containing antibacterial basil extract for use in biomedical applications.


Assuntos
Ocimum basilicum , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Ocimum basilicum/química , Extratos Vegetais/farmacologia
3.
Microorganisms ; 8(1)2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31963272

RESUMO

The influence of spore concentration on the ability of a Trichoderma consortium to colonize the Passiflora caerulea phyllosphere was evaluated by determining the effects of foliar treatments with two spore concentrations, in two repeated treatments, on the morphological, physiological, and ultrastructural characteristics, and on the yield and quality of P. caerulea. The studied crop quality features were related to its nutraceutical use: the accumulation of polyphenols and flavonoids, antioxidant activity, and effects on mouse fibroblast L929 cells. The Trichoderma consortium consisted of two strains, T. asperellum T36b and T. harzianum Td50b, and the concentrations used were 106 colony forming units (cfu)/mL and 108 cfu/mL. As a reference treatment, a commercial product that was based on herbs and algal extracts was used. As compared to the negative control, the treatment with the Trichoderma consortium at 108 cfu/mL concentration determines the accumulation of higher level of polyphenols and flavonoids and increased antioxidant activity. This enhancement of P. caerulea quality characteristics after treatment with the higher concentration of Trichoderma consortium was associated with larger leaves, increased number and size of chloroplasts, improved plant physiology characteristics, and an increased yield. The treatment with high concentration of Trichoderma consortium spores promotes phyllosphere colonization and benefits both crop yield and quality.

4.
Talanta ; 148: 37-45, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26653421

RESUMO

In this paper, an innovative method that uses hypericin "phyto-template" molecules is being applied herein for the first time to produce molecularly imprinted polymer (MIP) pearls able to selectively retain hypericin from Hypericum Perforatum L primary extracts. For this purpose, the wet phase inversion method was preferred for preparing the hypericin-MIP pearls for several reasons referring to economical benefits but also due to the fact that hypericin "phyto-template" molecules can be generated along with the phase inversion of the copolymer. Practically, the precursor poly(acrylonitrile-co-methacrylic acid) solution was mixed with a purified and concentrated naphtodianthrone phyto-extract (consisting only of hypericin and pseudo-hypericin). In the subsequent phase inversion step hypericin was trapped in the copolymer droplets, as a result to its poor solubility in the inversion water bath, and further served as "phyto-template" in the imprinting step. This in situ repartition of hypericin and pseudo-hypericin was sustained by HPLC-DAD chromatograms which recorded only the presence of hypericin during the extraction stage of imprinted pearls. Batch rebinding measurements, all together, validated the efficiency of this innovative imprinting procedure. The hypericin rebinding of imprinted pearls was quantitative (up to 318 µg/L) and approximately 5 times more specific relative to the blank pearls. Competitive re-binding revealed a more selective behaviour of imprinted pearls for hypericin when the up-take was measured against pseudohypericin (selectivity coefficient above 4.50).


Assuntos
Hypericum , Impressão Molecular/métodos , Perileno/análogos & derivados , Extratos Vegetais/análise , Extração em Fase Sólida/métodos , Antracenos , Cromatografia Líquida de Alta Pressão/métodos , Perileno/análise , Perileno/metabolismo , Extratos Vegetais/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA