Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 283: 114666, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34592338

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ervatamia coronaria, a popular garden plant in India and some other parts of the world is known traditionally for its anti-inflammatory and anti-cancer properties. The molecular bases of these functions remain poorly understood. AIM OF THE STUDY: Efficacies of the existing therapies for colorectal cancer (CRC) are limited by their life-threatening side effects and unaffordability. Therefore, identifying a safer, efficient, and affordable therapeutic is urgent. We studied the anti-CRC activity of an alkaloid-rich fraction of E. coronaria leaf extracts (AFE) and associated underlying mechanism. MATERIALS AND METHODS: Activity guided solvant fractionation was adopted to identify the activity in AFE. Different cell lines, and tumor grown in syngeneic mice were used to understand the anti-CRC effect. Methodologies such as LCMS, MTT, RT-qPCR, immunoblot, immunohistochemistry were employed to understand the molecular basis of its activity. RESULTS: We showed that AFE, which carries about six major compounds, is highly toxic to colorectal cancer (CRC) cells. AFE induced cell cycle arrest at G1 phase and p21 and p27 genes, while those of CDK2, CDK-4, cyclin-D, and cyclin-E genes were downregulated in HCT116 cells. It predominantly induced apoptosis in HCT116p53+/+ cells while the HCT116p53-/- cells under the same treatment condition died by autophagy. Notably, AFE induced upregulation of AMPK phosphorylation, and inhibition of both of the mTOR complexes as indicated by inhibition of phosphorylation of S6K1, 4EBP1, and AKT. Furthermore, AFE inhibited mTOR-driven conversion of cells from reversible cell cycle arrest to senescence (geroconversion) as well as ERK activity. AFE activity was independent of ROS produced, and did not primarily target the cellular DNA or cytoskeleton. AFE also efficiently regressed CT26-derived solid tumor in Balb/c mice acting alone or in synergy with 5FU through inducing autophagy as a major mechanism of action as indicated by upregulation of Beclin 1 and phospho-AMPK, and inhibition of phospho-S6K1 levels in the tumor tissue lysates. CONCLUSION: AFE induced CRC death through activation of both apoptotic and autophagy pathways without affecting the normal cells. This study provided a logical basis for consideration of AFE in future therapy regimen to overcome the limitations associated with existing anti-CRC chemotherapy.


Assuntos
Alcaloides/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Tabernaemontana/química , Proteínas Quinases Ativadas por AMP/metabolismo , Alcaloides/isolamento & purificação , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Células HCT116 , Células HT29 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Artigo em Inglês | MEDLINE | ID: mdl-34909665

RESUMO

Prostate cancer (PCa) is a major cause of morbidity and mortality in men worldwide. A geographic variation on the burden of the disease suggested that the environment, genetic makeup, lifestyle, and food habits modulate one's susceptibility to the disease. Although it has been generally thought to be an older age disease, and awareness and timely execution of screening programs have managed to contain the disease in the older population over the last decades, the incidence is still increasing in the population younger than 50. Existing treatment is efficient for PCa that is localized and responsive to androgen. However, the androgen resistant and metastatic PCa are challenging to treat. Conventional radiation and chemotherapies are associated with severe side effects in addition to being exorbitantly expensive. Many isolated phytochemicals and extracts of plants used in traditional medicine are known for their safety and diverse healing properties, including many with varying levels of anti-PCa activities. Many of the phytochemicals discussed here, as shown by many laboratories, inhibit tumor cell growth and proliferation by interfering with the components in the pathways responsible for the enhanced proliferation, metabolism, angiogenesis, invasion, and metastasis in the prostate cells while upregulating the mechanisms of cell death and cell cycle arrest. Notably, many of these agents simultaneously target multiple cellular pathways. We analyzed the available literature and provided an update on this issue in this review article.

3.
Free Radic Biol Med ; 172: 136-151, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34097996

RESUMO

Prostate cancer (PCa) is a major cause of mortality and morbidity in men. Available therapies yield limited outcome. We explored anti-PCa activity in a polyphenol-rich fraction of Bergenia ligulata (PFBL), a plant used in Indian traditional and folk medicine for its anti-inflammatory and antineoplastic properties. PFBL constituted of about fifteen different compounds as per LCMS analysis induced apoptotic death in both androgen-dependent LNCaP and androgen-refractory PC3 and DU145 cells with little effect on NKE and WI38 cells. Further investigation revealed that PFBL mediates its function through upregulating ROS production by enhanced catalytic activity of Monoamine oxidase A (MAO-A). Notably, the differential inactivation of NRF2-antioxidant response pathway by PFBL resulted in death in PC3 versus NKE cells involving GSK-3ß activity facilitated by AKT inhibition. PFBL efficiently reduced the PC3-tumor xenograft in NOD-SCID mice alone and in synergy with Paclitaxel. Tumor tissues in PFBL-treated mice showed upregulation of similar mechanism of cell death as observed in isolated PC3 cells i.e., elevation of MAO-A catalytic activity, ROS production accompanied by activation of ß-TrCP-GSK-3ß axis of NRF2 degradation. Blood counts, liver, and splenocyte sensitivity analyses justified the PFBL safety in the healthy mice. To our knowledge this is the first report of an activity that crippled NRF2 activation both in vitro and in vivo in response to MAO-A activation. Results of this study suggest the development of a novel treatment protocol utilizing PFBL to improve therapeutic outcome for patients with aggressive PCa which claims hundreds of thousands of lives each year.


Assuntos
Antioxidantes , Neoplasias da Próstata , Animais , Glicogênio Sintase Quinase 3 beta , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Monoaminoxidase , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Polifenóis/farmacologia , Neoplasias da Próstata/tratamento farmacológico
4.
Phytomedicine ; 67: 153152, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31887479

RESUMO

BACKGROUND: Lung cancer is the leading cause of cancer-related deaths worldwide. Several targets have been identified for lung cancer therapy, amongst which 'Microtubule' and its dynamics are the most widely studied and used in therapy. Tubulin-microtubule polymer dynamics are highly sought after targets in the field of anti-cancer drug designing. Natural compounds are important sources for developing anticancer therapeutics owing to their efficacy and lower cytotoxicity. Evidence suggested that therapeutic targeting of microtubule by natural compounds is amongst the most widely used interventions in numerous cancer therapies including lung cancer. PURPOSE: To determine the efficacy of apocynin (a natural compound) in suppressing the progression of lung carcinoma both in vitro and in vivo, along with the identification of targets and the underlying mechanism for developing a novel therapeutic approach. METHODS: We have demonstrated themicrotubule depolymerizing role of apocynin by established protocols in cellular and cell-free system. The efficacy of apocynin to inhibit lung carcinoma progression was studied on A549 cells.The tumoricidal ability of apocynin was studied in BALB/c mice model as well.Mice were classified into 4 groups namely-group II mice as tumor control; group III-IV mice asalso tumor-induced but treated with differential apocynin doses whereas group I mice were kept as normal. RESULTS: Apocynin, showed selective cytotoxicity towards lung cancer cells rather than normal lung fibroblast cells. Apocynin inhibited oncogenic properties including growth, proliferation (p < 0.05), colony formation (p < 0.05), invasion (p < 0.05) and spheroid formation (p < 0.05) in lung cancer cells. Apart from other established properties, apocynin was found to be a novel and potent component to bind with tubulin and depolymerize cellular microtubule network. Apocynin mediated cellular microtubule depolymerization was the driving mechanism to trigger autophagy-mediated apoptotic cell death (p < 0.05) which in turn retarded lung cancer progression. Furthermore, apocynin showed tumoricidal characteristics to inhibit lung tumorigenesis in mice as well. CONCLUSION: Targeting tubulin-microtubule equilibrium with apocynin could be the key regulator to catastrophe cellular catabolic processes to mitigate lung carcinoma. Thus, apocynin could be a potential therapeutic agent for lung cancer treatment.


Assuntos
Acetofenonas/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Moduladores de Tubulina/farmacologia , Células A549 , Acetofenonas/química , Animais , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/patologia , Masculino , Camundongos Endogâmicos BALB C , Microtúbulos/metabolismo , Neoplasias Experimentais/induzido quimicamente , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química
5.
Oncotarget ; 7(48): 78281-78296, 2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27835876

RESUMO

Aggregation of proteins with the expansion of polyglutamine tracts in the brain underlies progressive genetic neurodegenerative diseases (NDs) like Huntington's disease and spinocerebellar ataxias (SCA). An insensitive cellular proteotoxic stress response to non-native protein oligomers is common in such conditions. Indeed, upregulation of heat shock factor 1 (HSF1) function and its target protein chaperone expression has shown promising results in animal models of NDs. Using an HSF1 sensitive cell based reporter screening, we have isolated azadiradione (AZD) from the methanolic extract of seeds of Azadirachta indica, a plant known for its multifarious medicinal properties. We show that AZD ameliorates toxicity due to protein aggregation in cell and fly models of polyglutamine expansion diseases to a great extent. All these effects are correlated with activation of HSF1 function and expression of its target protein chaperone genes. Notably, HSF1 activation by AZD is independent of cellular HSP90 or proteasome function. Furthermore, we show that AZD directly interacts with purified human HSF1 with high specificity, and facilitates binding of HSF1 to its recognition sequence with higher affinity. These unique findings qualify AZD as an ideal lead molecule for consideration for drug development against NDs that affect millions worldwide.


Assuntos
DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Fatores de Transcrição de Choque Térmico/metabolismo , Limoninas/farmacologia , Doenças Neurodegenerativas/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Peptídeos/metabolismo , Extratos Vegetais/farmacologia , Agregação Patológica de Proteínas , Animais , Azadirachta/química , DNA/genética , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Células HCT116 , Células HEK293 , Fatores de Transcrição de Choque Térmico/genética , Humanos , Limoninas/isolamento & purificação , Limoninas/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/metabolismo , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/metabolismo , Ligação Proteica , Sementes , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA