Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 10954, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414773

RESUMO

Prunus armeniaca gum is used as food additive and ethno medicinal purpose. Two empirical models response surface methodology and artificial neural network were used to search for optimized extraction parameters for gum extraction. A four-factor design was implemented for optimization of extraction process for maximum yield which was obtained under the optimized extraction parameter (temperature, pH, extraction time, and gum/water ratio). Micro and macro-elemental composition of gum was determined by using laser induced breakdown spectroscopy. Gum was evaluated for toxicological effect and pharmacological properties. The maximum predicted yield obtained by response surface methodology and artificial neural network was 30.44 and 30.70% which was very close to maximum experimental yield 30.23%. Laser induced breakdown spectroscopic spectra confirmed the presence Calcium, Potassium, Magnesium, Sodium, Lithium, Carbon, Hydrogen, Nitrogen and Oxygen. Acute oral toxicity study showed that gum is non-toxic up to 2000 mg/Kg body weight in rabbits, accompanied by high cytotoxic effects of gum against HepG2 and MCF-7cells by MTT assay. Overall, Aqueous solution of gum showed various pharmacological activities with significant value of antioxidant, antibacterial, anti-nociceptive, anti-cancer, anti-inflammatory and thrombolytic activities. Thus, optimization of parameters using mathematical models cans offer better prediction and estimations with enhanced pharmacological properties of extracted components.


Assuntos
Antioxidantes , Exsudatos de Plantas , Animais , Coelhos , Antioxidantes/farmacologia , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Gomas Vegetais/química , Água , Exsudatos e Transudatos
2.
Front Pharmacol ; 12: 774583, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950034

RESUMO

The screening of hair follicles, dermal papilla cells, and keratinocytes through in vitro, in vivo, and histology has previously been reported to combat alopecia. Ficus benghalensis has been used conventionally to cure skin and hair disorders, although its effect on 5α-reductase II is still unknown. Currently, we aim to analyze the phytotherapeutic impact of F. benghalensis leaf extracts (FBLEs) for promoting hair growth in rabbits along with in vitro inhibition of the steroid isozyme 5α-reductase II. The inhibition of 5α-reductase II by FBLEs was assessed by RP-HPLC, using the NADPH cofactor as the reaction initiator and Minoxin (5%) as a positive control. In silico studies were performed using AutoDock Vina to visualize the interaction between 5α-reductase II and the reported phytoconstituents present in FBLEs. Hair growth in female albino rabbits was investigated by applying an oral dose of the FBLE formulation and control drug to the skin once a day. The skin tissues were examined by histology to see hair follicles. Further, FAAS, FTIR, and antioxidants were performed to check the trace elements and secondary metabolites in the FBLEs. The results of RP-HPLC and the binding energies showed that FBLEs reduced the catalytic activity of 5α-reductase II and improved cell proliferation in rabbits. The statistical analysis (p < 0.05 or 0.01) and percentage inhibition (>70%) suggested that hydroalcoholic FBLE has more potential in increasing hair growth by elongating hair follicle's anagen phase. FAAS, FTIR, and antioxidant experiments revealed sufficient concentrations of Zn, Cu, K, and Fe, together with the presence of polyphenols and scavenging activity in FBLE. Overall, we found that FBLEs are potent in stimulating hair follicle maturation by reducing the 5α-reductase II action, so they may serve as a principal choice in de novo drug designing to treat hair loss.

3.
Iran J Basic Med Sci ; 22(11): 1225-1252, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32128087

RESUMO

Cuscuta, commonly known as dodder, is a genus of family convolvolaceace. Approximately 170 species of Cuscuta are extensively distributed in temperate and subtropical areas of the world. Species of this genus are widely used as essential constituents in functional foods and traditional medicinal systems. Various parts of many members of Cuscuta have been found efficacious against a variety of diseases. Phytochemical investigations have confirmed presence of biologically active moieties such as flavonoids, alkaloids, lignans, saponines, phenolics, tannins, and fatty acids. Pharmacological studies and traditional uses of these plants have proved that they are effective antibacterial, antioxidant, antiostioporotic, hepatoprotective, anti-inflammatory, antitumor, antipyretic, antihypertensive, analgesic, anti hair fall, and antisteriogenic agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA