Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nutrients ; 15(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37764861

RESUMO

Thymus atlanticus (Lamiaceae) is a plant endemic to the Mediterranean basin that is found in significant quantities in the arid regions of Morocco. Thymus atlanticus is used in traditional medicine to treat infectious and non-infectious diseases. It is also used for the isolation of essential oils and for the seasoning of many dishes in the Mediterranean diet. The major constituents of Thymus atlanticus are saponins, flavonoids, tannins, alkaloids, various simple and hydroxycinnamic phenolic compounds, and terpene compounds. Several of these compounds act on signaling pathways of oxidative stress, inflammation, and blood sugar, which are parameters often dysregulated during aging. Due to its physiochemical characteristics and biological activities, Thymus atlanticus could be used for the prevention and/or treatment of age-related diseases. These different aspects are treated in the present review, and we focused on phytochemistry and major age-related diseases: dyslipidemia, cardiovascular diseases, and type 2 diabetes.

2.
J Steroid Biochem Mol Biol ; 232: 106345, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37286110

RESUMO

Aging is a complex biological process which can be associated with skeletal muscle degradation leading to sarcopenia. The aim of this study consisted i) to determine the oxidative and inflammatory status of sarcopenic patients and ii) to clarify the impact of oxidative stress on myoblasts and myotubes. To this end, various biomarkers of inflammation (C-reactive protein (CRP), TNF-α, IL-6, IL-8, leukotriene B4 (LTB4)) and oxidative stress (malondialdehyde, conjugated dienes, carbonylated proteins and antioxidant enzymes: catalase, superoxide dismutase, glutathione peroxidase) as well as oxidized derivatives of cholesterol formed by cholesterol autoxidation (7-ketocholesterol, 7ß-hydroxycholesterol), were analyzed. Apelin, a myokine which contributes to muscle strength, was also quantified. To this end, a case-control study was conducted to evaluate the RedOx and inflammatory status in 45 elderly subjects (23 non-sarcopenic; 22 sarcopenic) from 65 years old and higher. SARCopenia-Formular (SARC-F) and Timed Up and Go (TUG) tests were used to distinguish between sarcopenic and non-sarcopenic subjects. By using red blood cells, plasma and/or serum, we observed in sarcopenic patients an increased activity of major antioxidant enzymes (superoxide dismutase, glutathione peroxidase, catalase) associated with lipid peroxidation and protein carbonylation (increased level of malondialdehyde, conjugated dienes and carbonylated proteins). Higher levels of 7-ketocholesterol and 7ß-hydroxycholesterol were also observed in the plasma of sarcopenic patients. Significant differences were only observed with 7ß-hydroxycholesterol. In sarcopenic patients comparatively to non-sarcopenic subjects, significant increase of CRP, LTB4 and apelin were observed whereas similar levels of TNF-α, IL-6 and IL-8 were found. The increased plasma level of 7-ketocholesterol and 7ß-hydroxycholesterol in sarcopenic patients led us to study the cytotoxic effect of these oxysterols on undifferentiated (myoblasts) and differentiated (myotubes) murine C2C12 cells. With the fluorescein diacetate and sulforhodamine 101 assays, an induction of cell death was observed both on undifferentiated and differentiated cells: the cytotoxic effects were less pronounced with 7-ketocholesterol. In addition, IL-6 secretion was never detected whatever the culture conditions, TNF-α secretion was significantly increased on undifferentiated and differentiated C2C12 cells treated with 7-ketocholesterol- and 7ß-hydroxycholesterol, and IL-8 secretion was increased on differentiated cells. 7-ketocholesterol- and 7ß-hydroxycholesterol-induced cell death was strongly attenuated by α-tocopherol and Pistacia lentiscus L. seed oil both on myoblasts and/or myotubes. TNF-α and/or IL-8 secretions were reduced by α-tocopherol and Pistacia lentiscus L. seed oil. Our data support the hypothesis that the enhancement of oxidative stress observed in sarcopenic patients could contribute, especially via 7ß-hydroxycholesterol, to skeletal muscle atrophy and inflammation via cytotoxic effects on myoblasts and myotubes. These data bring new elements to understand the pathophysiology of sarcopenia and open new perspectives for the treatment of this frequent age-related disease.


Assuntos
Antioxidantes , Sarcopenia , Humanos , Camundongos , Animais , Idoso , Catalase , Apelina/metabolismo , Apelina/farmacologia , Antioxidantes/farmacologia , alfa-Tocoferol/metabolismo , alfa-Tocoferol/farmacologia , Sarcopenia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-8/metabolismo , Estudos de Casos e Controles , Interleucina-6/metabolismo , Leucotrieno B4/metabolismo , Leucotrieno B4/farmacologia , Hidroxicolesteróis/metabolismo , Cetocolesteróis/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Glutationa Peroxidase , Biomarcadores/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Óleos de Plantas/metabolismo , Óleos de Plantas/farmacologia
3.
J Oleo Sci ; 71(8): 1117-1133, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35922928

RESUMO

The present study provides the fatty acid, tocopherol, phytosterol, and polyphenol profiles of some Mediterranean oils extracted from pumpkin, melon, and black cumin seed oils and those of dietary argan seed oil. Gas chromatography analysis revealed that oleic and linoleic acids were the most abundant fatty acids. Argan and melon seed oils exhibited the highest levels of oleic acid (47.32±0.02%) and linoleic acid (58.35±0.26%), respectively. In terms of tocopherols, melon seed oil showed the highest amount (652.1±3.26 mg/kg) with a predominance of γ-tocopherol (633.1±18.81 mg/kg). The phytosterol content varied between 2237.00±37.55 µg/g for argan oil to 6995.55±224.01 µg/g for melon seed oil. High Performance Liquid Chromatography analysis also revealed the presence of several polyphenols: vanillin (0.59 mg equivalents Quercetin/100 g) for melon seed oil, and p-hydroxycinnamic acid (0.04 mg equivalents Quercetin/100 g), coumarine (0.05 mg equivalents Quercetin/100 g), and thymoquinone (1.2 mg equivalents Quercetin/100 g) for black cumin seed oil. The "Kit Radicaux Libres" (KRL) assay used to evaluate the scavenging properties of the oils showed that black cumin seed oil was the most efficient. On the light of the richness of all Mediterranean oil samples in bioactive compounds, the seed oils studied can be considered as important sources of nutrients endowed with cytoprotective properties which benefits in preventing age-related diseases which are characterized by an enhanced oxidative stress.


Assuntos
Fitosteróis , Tocoferóis , Ácidos Graxos/análise , Nutrientes/análise , Óleos de Plantas/química , Polifenóis/análise , Quercetina , Esteróis/análise , Tocoferóis/análise
4.
Nutrients ; 14(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35683996

RESUMO

Coronavirus illness (COVID-19) is an infectious pathology generated by intense severe respiratory syndrome coronavirus 2 (SARS-CoV-2). This infectious disease has emerged in 2019. The COVID-19-associated pandemic has considerably affected the way of life and the economy in the world. It is consequently crucial to find solutions allowing remedying or alleviating the effects of this infectious disease. Natural products have been in perpetual application from immemorial time given that they are attested to be efficient towards several illnesses without major side effects. Various studies have shown that plant extracts or purified molecules have a promising inhibiting impact towards coronavirus. In addition, it is substantial to understand the characteristics, susceptibility and impact of diet on patients infected with COVID-19. In this review, we recapitulate the influence of extracts or pure molecules from medicinal plants on COVID-19. We approach the possibilities of plant treatment/co-treatment and feeding applied to COVID-19. We also show coronavirus susceptibility and complications associated with nutrient deficiencies and then discuss the major food groups efficient on COVID-19 pathogenesis. Then, we covered emerging technologies using plant-based SARS-CoV-2 vaccine. We conclude by giving nutrient and plants curative therapy recommendations which are of potential interest in the COVID-19 infection and could pave the way for pharmacological treatments or co-treatments of COVID-19.


Assuntos
COVID-19 , Antivirais/uso terapêutico , Vacinas contra COVID-19 , Dieta , Humanos , Incidência , Nutrientes , Estresse Oxidativo , SARS-CoV-2
5.
Steroids ; 183: 109032, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35381271

RESUMO

Peroxisomes play an important role in regulating cell metabolism and RedOx homeostasis. Peroxisomal dysfunctions favor oxidative stress and cell death. The ability of 7ß-hydroxycholesterol (7ß-OHC; 50 µM, 24 h), known to be increased in patients with age-related diseases such as sarcopenia, to trigger oxidative stress, mitochondrial and peroxisomal dysfunction was studied in murine C2C12 myoblasts. The capacity of milk thistle seed oil (MTSO, 100 µg/mL) as well as α-tocopherol (400 µM; reference cytoprotective agent) to counteract the toxic effects of 7ß-OHC, mainly at the peroxisomal level were evaluated. The impacts of 7ß-OHC, in the presence or absence of MTSO or α-tocopherol, were studied with complementary methods: measurement of cell density and viability, quantification of reactive oxygen species (ROS) production and transmembrane mitochondrial potential (ΔΨm), evaluation of peroxisomal mass as well as topographic, morphologic and functional peroxisomal changes. Our results indicate that 7ß-OHC induces a loss of cell viability and a decrease of cell adhesion associated with ROS overproduction, alterations of mitochondrial ultrastructure, a drop of ΔΨm, and several peroxisomal modifications. In the presence of 7ß-OHC, comparatively to untreated cells, important quantitative and qualitative peroxisomal modifications were also identified: a) a reduced number of peroxisomes with abnormal sizes and shapes, mainly localized in cytoplasmic vacuoles, were observed; b) the peroxisomal mass was decreased as indicated by lower protein and mRNA levels of the peroxisomal ABCD3 transporter; c) lower mRNA level of Pex5 involved in peroxisomal biogenesis as well as higher mRNA levels of Pex13 and Pex14, involved in peroxisomal biogenesis and/or pexophagy, was found; d) lower levels of ACOX1 and MFP2 enzymes, implicated in peroxisomal ß-oxidation, were detected; e) higher levels of very-long-chain fatty acids, which are substrates of peroxisomal ß-oxidation, were found. These different cytotoxic effects were strongly attenuated by MTSO, in the same range of order as with α-tocopherol. These findings underline the interest of MTSO and α-tocopherol in the prevention of peroxisomal damages (pexotherapy).


Assuntos
Silybum marianum , alfa-Tocoferol , Animais , Antioxidantes/farmacologia , Flavonoides , Humanos , Hidroxicolesteróis , Camundongos , Silybum marianum/metabolismo , Mioblastos/metabolismo , Óleos de Plantas , RNA Mensageiro , Espécies Reativas de Oxigênio/metabolismo , alfa-Tocoferol/farmacologia
6.
Nutrients ; 14(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35276955

RESUMO

Saffron (Crocus sativus L.) is a medicinal plant, originally cultivated in the East and Middle East, and later in some Mediterranean countries. Saffron is obtained from the stigmas of the plant. Currently, the use of saffron is undergoing a revival. The medicinal virtues of saffron, its culinary use and its high added value have led to the clarification of its phytochemical profile and its biological and therapeutic characteristics. Saffron is rich in carotenoids and terpenes. The major products of saffron are crocins and crocetin (carotenoids) deriving from zeaxanthin, pirocrocin and safranal, which give it its taste and aroma, respectively. Saffron and its major compounds have powerful antioxidant and anti-inflammatory properties in vitro and in vivo. Anti-tumor properties have also been described. The goal of this review is to present the beneficial effects of saffron and its main constituent molecules on neuropsychiatric diseases (depression, anxiety and schizophrenia) as well as on the most frequent age-related diseases (cardiovascular, ocular and neurodegenerative diseases, as well as sarcopenia). Overall, the phytochemical profile of saffron confers many beneficial virtues on human health and, in particular, on the prevention of age-related diseases, which is a major asset reinforcing the interest for this medicinal plant.


Assuntos
Crocus , Plantas Medicinais , Envelhecimento , Crocus/química , Humanos , Nutrientes , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
7.
Cells ; 11(5)2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35269491

RESUMO

Plants are an important source of pharmacologically active compounds. In the present work, we characterize the impact of black cumin (Nigella sativa L.) aqueous extracts on a yeast model of p53-dependent apoptosis. To this end, the Saccharomyces cerevisiae recombinant strain over-expressing p53 was used. The over-expression of p53 triggers the expression of apoptotic markers: the externalization of phosphatidylserine, mitochondrial defect associated with cytochrome-c release and the induction of DNA strand breaks. These different effects were attenuated by Nigella sativa L. aqueous extracts, whereas these extracts have no effect on the level of p53 expression. Thus, we focus on the anti-apoptotic molecules present in the aqueous extract of Nigella sativa L. These extracts were purified and characterized by complementary chromatographic methods. Specific fluorescent probes were used to determine the effect of the extracts on yeast apoptosis. Yeast cells over-expressing p53 decrease in relative size and have lower mitochondrial content. The decrease in cell size was proportional to the decrease in mitochondrial content and of mitochondrial membrane potential (ΔΨm). These effects were prevented by the purified aqueous fraction obtained by fractionation with different columns, named C4 fraction. Yeast cell death was also characterized by reactive oxygen species (ROS) overproduction. In the presence of the C4 fraction, ROS overproduction was strongly reduced. We also noted that the C4 fraction promotes the cell growth of control yeast cells, which do not express p53, supporting the fact that this purified extract acts on cellular mediators activating cell proliferation independently of p53. Altogether, our data obtained on yeast cells over-expressing p53 demonstrate that anti-apoptotic molecules targeting p53-induced apoptosis associated with mitochondrial dysfunction and ROS overproduction are present in the aqueous extracts of Nigella seeds and in the purified aqueous C4 fraction.


Assuntos
Nigella sativa , Apoptose , Nigella sativa/química , Nigella sativa/metabolismo , Extratos Vegetais/química , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Sementes/metabolismo , Proteína Supressora de Tumor p53/metabolismo
8.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638979

RESUMO

Neurodegenerative diseases represent a major public health issue and require better therapeutic management. The treatments developed mainly target neuronal activity. However, an inflammatory component must be considered, and microglia may constitute an important therapeutic target. Given the difficulty in developing molecules that can cross the blood-brain barrier, the use of food-derived molecules may be an interesting therapeutic avenue. Docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid (22:6 omega-3), has an inhibitory action on cell death and oxidative stress induced in the microglia. It also acts on the inflammatory activity of microglia. These data obtained in vitro or on animal models are corroborated by clinical trials showing a protective effect of DHA. Whereas DHA crosses the blood-brain barrier, nutritional intake lacks specificity at both the tissue and cellular level. Nanomedicine offers new tools which favor the delivery of DHA at the cerebral level, especially in microglial cells. Because of the biological activities of DHA and the associated nanotargeting techniques, DHA represents a therapeutic molecule of interest for the treatment of neurodegenerative diseases.


Assuntos
Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Microglia/metabolismo , Nanopartículas/química , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Substâncias Protetoras/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Modelos Animais de Doenças , Humanos , Inflamação/dietoterapia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Doenças Neurodegenerativas/dietoterapia , Estresse Oxidativo/efeitos dos fármacos , Resultado do Tratamento
9.
Biomolecules ; 11(6)2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34071950

RESUMO

Oxysterols are assumed to be the driving force behind numerous neurodegenerative diseases. In this work, we aimed to study the ability of 7ß-hydroxycholesterol (7ß-OHC) to trigger oxidative stress and cell death in human neuroblastoma cells (SH-SY5Y) then the capacity of Nigella sativa and Milk thistle seed oils (NSO and MTSO, respectively) to oppose 7ß-OHC-induced side effects. The impact of 7ß-OHC, associated or not with NSO or MTSO, was studied on different criteria: cell viability; redox status, and apoptosis. Oxidative stress was assessed through the intracellular reactive oxygen species (ROS) production, levels of enzymatic and non-enzymatic antioxidants, lipid, and protein oxidation products. Our results indicate that 7ß-OHC (40 µg/mL) exhibit pr-oxidative and pro-apoptotic activities shown by a decrease of the antioxidant enzymatic activities and an increase of ROS production, lipid, and protein oxidation end products as well as nitrotyrosine formation and caspase 3 activation. However, under the pre-treatment with NSO, and especially with MTSO (100 µg/mL), a marked attenuation of oxidative damages was observed. Our study suggests harmful effects of 7ß-OHC consisting of pro-oxidative, anti-proliferative, and pro-apoptotic activities that may contribute to neurodegeneration. NSO and especially MTSO showed potential cytoprotection against the cytotoxicity of 7ß-OHC.


Assuntos
Citoproteção/efeitos dos fármacos , Citotoxinas/toxicidade , Hidroxicolesteróis/toxicidade , Nigella/química , Estresse Oxidativo/efeitos dos fármacos , Óleos de Plantas , Sementes/química , Silybum marianum/química , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Óleos de Plantas/química , Óleos de Plantas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA