Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Fungal Genet Biol ; 98: 23-34, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27876630

RESUMO

Based on genomic analysis, polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) pathways account for biosynthesis of the majority of the secondary metabolites produced by the entomopathogenic fungus Metarhizium robertsii. To evaluate the contribution of these pathways to M. robertsii fitness and/or virulence, mutants deleted for mrpptA, the Sfp-type 4' phosphopantetheinyl transferase gene required for their activation were generated. ΔmrpptA strains were deficient in PKS and NRPS activity resulting in colonies that lacked the typical green pigment and failed to produce the nonribosomal peptides (destruxins, serinocylins, and the siderophores ferricrocin and metachelins) as well as the hybrid polyketide-peptides (NG-39x) that are all produced by the wild type (WT) M. robertsii. The ΔmrpptA colonies were also auxotrophic for lysine. Two other mutant strains were generated: ΔmraarA, in which the α-aminoadipate reductase gene critical for lysine biosynthesis was disrupted, and ΔmrsidA, in which the L-ornithine N5-oxygenase gene that is critical for hydroxamate siderophore biosynthesis was disrupted. The phenotypes of these mutants were compared to those of ΔmrpptA to separate effects of the loss of lysine or siderophore production from the overall effect of losing all polyketide and non-ribosomal peptide production. Loss of lysine biosynthesis marginally increased resistance to H2O2 while it had little effect on the sensitivity to the cell wall disruptor sodium dodecyl sulfate (SDS) and no effect on sensitivity to iron deprivation. In contrast, combined loss of metachelin and ferricrocin through the inactivation of mrsidA resulted in mutants that were as hypersensitive or slightly more sensitive to H2O2, iron deprivation, and SDS, and were either identical or marginally higher in ΔmrpptA strains. In contrast to ΔmrpptA, loss of mrsidA did not completely abolish siderophore activity, which suggests the production of one or more non-hydroxamate iron-chelating compounds. Deletion of mrpptA, mrsidA, and mraarA reduced conidium production and conidia of a GFP-tagged ΔmrpptA strain displayed a longer germination delay than WT on insect cuticles, a deficiency that was rescued by lysine supplementation. Compared with WT, ΔmrpptA strains displayed ∼19-fold reduction in virulence against Drosophila suzukii. In contrast, lysine auxotrophy and loss of siderophores accounted for ∼2 and ∼6-fold decreases in virulence, respectively. Deletion of mrpptA had no significant effect on growth inhibition of Bacillus cereus. Our results suggest that PKS and NRPS metabolism plays a significant role in M. robertsii virulence, depresses conidium production, and contributes marginally to resistance to oxidative stress and iron homeostasis, but has no significant antibacterial effect.


Assuntos
Proteínas Fúngicas/genética , Lisina/genética , Metarhizium/genética , Peptídeo Sintases/genética , Policetídeo Sintases/genética , Animais , Drosophila/microbiologia , Proteínas Fúngicas/metabolismo , Ferro/metabolismo , Lisina/biossíntese , Metarhizium/metabolismo , Metarhizium/patogenicidade , Mutação , Estresse Oxidativo/genética , Peptídeo Sintases/metabolismo , Policetídeo Sintases/metabolismo , Metabolismo Secundário/genética , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/patogenicidade
2.
Mol Plant Microbe Interact ; 27(8): 793-808, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24762221

RESUMO

Iron is an essential nutrient and prudent iron acquisition and management are key traits of a successful pathogen. Fungi use nonribosomally synthesized secreted iron chelators (siderophores) or reductive iron assimilation (RIA) mechanisms to acquire iron in a high affinity manner. Previous studies with the maize pathogen Cochliobolus heterostrophus identified two genes, NPS2 and NPS6, encoding different nonribosomal peptide synthetases responsible for biosynthesis of intra- and extracellular siderophores, respectively. Deletion of NPS6 results in loss of extracellular siderophore biosynthesis, attenuated virulence, hypersensitivity to oxidative and iron-depletion stress, and reduced asexual sporulation, while nps2 mutants are phenotypically wild type in all of these traits but defective in sexual spore development when NPS2 is missing from both mating partners. Here, it is reported that nps2nps6 mutants have more severe phenotypes than both nps2 and nps6 single mutants. In contrast, mutants lacking the FTR1 or FET3 genes encoding the permease and ferroxidase components, respectively, of the alternate RIA system, are like wild type in all of the above phenotypes. However, without supplemental iron, combinatorial nps6ftr1 and nps2nps6ftr1 mutants are less virulent, are reduced in growth, and are less able to combat oxidative stress and to sporulate asexually, compared with nps6 mutants alone. These findings demonstrate that, while the role of RIA in metabolism and virulence is overshadowed by that of extracellular siderophores as a high-affinity iron acquisition mechanism in C. heterostrophus, it functions as a critical backup for the fungus.


Assuntos
Ascomicetos/fisiologia , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Ferro/metabolismo , Doenças das Plantas/microbiologia , Zea mays/microbiologia , Ascomicetos/citologia , Ascomicetos/genética , Ascomicetos/patogenicidade , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Proteínas Fúngicas/metabolismo , Homeostase , Peróxido de Hidrogênio/metabolismo , Ferro/farmacologia , Deficiências de Ferro , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Oxirredução , Estresse Oxidativo , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Fenótipo , Folhas de Planta/citologia , Folhas de Planta/microbiologia , Sideróforos/isolamento & purificação , Sideróforos/metabolismo , Esporos Fúngicos , Virulência , Zea mays/citologia
3.
J Bacteriol ; 195(2): 287-96, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23144243

RESUMO

Pseudomonas syringae pv. tomato DC3000 produces the phytotoxin coronatine, a major determinant of the leaf chlorosis associated with DC3000 pathogenesis. The DC3000 PSPTO4723 (cmaL) gene is located in a genomic region encoding type III effectors; however, it promotes chlorosis in the model plant Nicotiana benthamiana in a manner independent of type III secretion. Coronatine is produced by the ligation of two moieties, coronafacic acid (CFA) and coronamic acid (CMA), which are produced by biosynthetic pathways encoded in separate operons. Cross-feeding experiments, performed in N. benthamiana with cfa, cma, and cmaL mutants, implicate CmaL in CMA production. Furthermore, analysis of bacterial supernatants under coronatine-inducing conditions revealed that mutants lacking either the cma operon or cmaL accumulate CFA rather than coronatine, supporting a role for CmaL in the regulation or biosynthesis of CMA. CmaL does not appear to regulate CMA production, since the expression of proteins with known roles in CMA production is unaltered in cmaL mutants. Rather, CmaL is needed for the first step in CMA synthesis, as evidenced by the fact that wild-type levels of coronatine production are restored to a ΔcmaL mutant when it is supplemented with 50 µg/ml l-allo-isoleucine, the starting unit for CMA production. cmaL is found in all other sequenced P. syringae strains with coronatine biosynthesis genes. This characterization of CmaL identifies a critical missing factor in coronatine production and provides a foundation for further investigation of a member of the widespread DUF1330 protein family.


Assuntos
Aminoácidos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Indenos/metabolismo , Isoleucina/metabolismo , Pseudomonas syringae/enzimologia , Deleção de Genes , Redes e Vias Metabólicas/genética , Doenças das Plantas/microbiologia , Pseudomonas syringae/genética , Pseudomonas syringae/metabolismo , Nicotiana/microbiologia
4.
J Chem Ecol ; 37(8): 871-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21739223

RESUMO

Pale swallow-wort (Vincetoxicum rossicum) and black swallow-wort (V. nigrum) are two emerging invasive plant species in the northeastern United States and southeastern Canada that have shown rapid population expansion over the past 20 years. Using bioassay-guided fractionation, the known phytochemical phenanthroindolizidine alkaloid, (-)-antofine, was identified as a potent phytotoxin in roots, leaves, and seeds of both swallow-wort species. In seedling bioassays, (-)-antofine, at µM concentrations, resulted in greatly reduced root growth of Asclepias tuberosa, A. syriaca, and Apocynum cannabinum, three related, native plant species typically found in habitats where large stands of swallow-wort are present. In contrast, antofine exhibited moderate activity against lettuce, and it had little effect on germination and root growth of either black or pale swallow-wort. In disk diffusion assays, antifungal activity was observed at 10 µg and 100 µg, while antibacterial activity was seen only at the higher level. Although both swallow-wort species display multiple growth and reproductive characteristics that may play an important role in their invasiveness, the presence of the highly bioactive phytochemical (-)-antofine in root and seed tissues indicates a potential allelopathic role in swallow-worts' invasiveness.


Assuntos
Indóis/toxicidade , Fenantrolinas/toxicidade , Extratos Vegetais/toxicidade , Plantas Daninhas/toxicidade , Apocynum/crescimento & desenvolvimento , Asclepias/crescimento & desenvolvimento , Lactuca/crescimento & desenvolvimento
5.
Antonie Van Leeuwenhoek ; 94(1): 3-10, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18392685

RESUMO

Streptomyces species are best known for their ability to produce a wide array of medically and agriculturally important secondary metabolites. However, there is a growing number of species which, like Streptomyces scabies, can function as plant pathogens and cause scab disease on economically important crops such as potato. All of these species produce the phytotoxin thaxtomin, a nitrated dipeptide which inhibits cellulose synthesis in expanding plant tissue. The biosynthesis of thaxtomin involves conserved non-ribosomal peptide synthetases, P450 monooxygenases, and a nitric oxide synthase, the latter being required for nitration of the toxin. This nitric oxide synthase is also responsible for the production of diffusible nitric oxide by scab-causing streptomycetes at the host-pathogen interface, suggesting that nitric oxide production might play an additional role during the infection process. The thaxtomin biosynthetic genes are transcriptionally regulated by an AraC/XylS family regulator, TxtR, which is conserved in pathogenic streptomycetes and is encoded within the thaxtomin biosynthetic gene cluster. The TxtR protein specifically binds cellobiose, a known inducer of thaxtomin biosynthesis, and cellobiose is required for expression of the biosynthetic genes. A second virulence gene in pathogenic Streptomyces species, nec1, encodes a novel secreted protein that may suppress plant defence responses. The thaxtomin biosynthetic genes and nec1 are contained on a large mobilizable pathogenicity island; the transfer of this island to recipient streptomycetes likely explains the rapid emergence of new pathogenic species. The newly available genome sequence of S. scabies will provide further insight into the mechanisms utilized by pathogenic streptomycetes during plant-microbe interactions.


Assuntos
Indóis/metabolismo , Piperazinas/metabolismo , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Streptomyces/metabolismo , Streptomyces/patogenicidade , Bactérias/classificação , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Vias Biossintéticas , Celobiose/metabolismo , Regulação Bacteriana da Expressão Gênica , Indóis/química , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Piperazinas/química , Streptomyces/classificação , Streptomyces/genética , Virulência
6.
Arch Microbiol ; 188(1): 81-8, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17340119

RESUMO

Several Streptomyces species cause plant diseases, including S. scabies, S. acidiscabies and S. turgidiscabies, which produce common scab of potato and similar diseases of root crops. These species produce thaxtomins, dipeptide phytotoxins that are responsible for disease symptoms. Thaxtomins are produced in vivo on diseased potato tissue and in vitro in oat-based culture media, but the regulation of thaxtomin biosynthesis is not understood. S. acidiscabies was grown in a variety of media to assess the impact of medium components on thaxtomin A (ThxA) production. ThxA biosynthesis was not correlated with bacterial biomass, nor was it stimulated by alpha-solanine or alpha-chaconine, the two most prevalent potato glycoalkaloids. ThxA production was stimulated by oat bran broth, even after exhaustive extraction, suggesting that specific carbohydrates may influence ThxA biosynthesis. Oat bran contains high levels of xylans and glucans, and both of these carbohydrates, as well as xylans from wheat and tamarind, stimulated ThxA production, but not to the same extent as oat bran. Starches and simple sugars did not induce ThxA production. The data indicate that complex carbohydrates may act as environmental signals to plant pathogenic Streptomyces, allowing production of thaxtomin and enabling bacteria to colonize its host.


Assuntos
Carboidratos/farmacologia , Indóis/metabolismo , Piperazinas/metabolismo , Streptomyces/efeitos dos fármacos , Avena/química , Carboidratos/química , Glucanos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Solanina/análogos & derivados , Solanina/farmacologia , Streptomyces/crescimento & desenvolvimento , Streptomyces/metabolismo , Triticum/química , Xilanos/farmacologia
7.
Plant Physiol Biochem ; 45(1): 24-32, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17300946

RESUMO

In vitro shoot cultures of Hypericum perforatum derived from wild populations grown in Armenia have a wide variation of hypericin and pseudohypericin metabolite content. We found that a germ line denoted as HP3 produces six times more hypericin and fourteen times more pseudohypericin than a second line labeled HP1. We undertook a structural comparison of the two lines (HP1 and HP3) in order to see if there are any anatomical or morphological differences that could explain the differences in production of these economically important metabolites. Analysis by LM (light microscopy), SEM (scanning electron microscopy), and TEM (transmission electron microscopy) reveals that the hypericin/pseudohypericin-containing black glands located along the margins of the leaves consist of a peripheral sheath of flattened cells surrounding a core of interior cells that are typically dead at maturity. The peripheral cells of the HP3 glands appear less flattened than those of the HP1 glands. This may indicate that the peripheral cells are involved in hypericin/pseudohypericin production. Furthermore, we find that these peripheral cells undergo a developmental transition into the gland's interior cells. The fact that the size of the peripheral cells may correlate with metabolite production adds a new hypothesis for the actual site of hypericin synthesis.


Assuntos
Hypericum/metabolismo , Perileno/análogos & derivados , Antracenos , Células Cultivadas , Hypericum/ultraestrutura , Microscopia Eletrônica de Varredura , Perileno/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Brotos de Planta/metabolismo , Brotos de Planta/ultraestrutura
8.
Mol Microbiol ; 55(4): 1025-33, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15686551

RESUMO

Potato scab is a globally important disease caused by polyphyletic plant pathogenic Streptomyces species. Streptomyces acidiscabies, Streptomyces scabies and Streptomyces turgidiscabies possess a conserved biosynthetic pathway for the nitrated dipeptide phytotoxin thaxtomin. These pathogens also possess the nec1 gene which encodes a necrogenic protein that is an independent virulence factor. In this article we describe a large (325-660 kb) pathogenicity island (PAI) conserved among these three plant pathogenic Streptomyces species. A partial DNA sequence of this PAI revealed the thaxtomin biosynthetic pathway, nec1, a putative tomatinase gene, and many mobile genetic elements. In addition, the PAI from S. turgidiscabies contains a plant fasciation (fas) operon homologous to and colinear with the fas operon in the plant pathogen Rhodococcus fascians. The PAI was mobilized during mating from S. turgidiscabies to the non-pathogens Streptomyces coelicolor and Streptomyces diastatochromogenes on a 660 kb DNA element and integrated site-specifically into a putative integral membrane lipid kinase. Acquisition of the PAI conferred a pathogenic phenotype on S. diastatochromogenes but not on S. coelicolor. This PAI is the first to be described in a Gram-positive plant pathogenic bacterium and is responsible for the emergence of new plant pathogenic Streptomyces species in agricultural systems.


Assuntos
Doenças das Plantas/microbiologia , Plantas/microbiologia , Streptomyces/patogenicidade , Sequência de Bases , DNA Bacteriano/genética , Enzimas/genética , Proteínas de Plantas/genética , Solanum tuberosum/microbiologia , Streptomyces/classificação , Streptomyces/genética , Virulência
9.
J Chem Ecol ; 29(12): 2667-81, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14969354

RESUMO

Plants respond to herbivore and pathogen attack by a variety of direct and indirect mechanisms that include the induction of secondary metabolites. The phytomedicinal plant Hypericum perforatum L. produces two different classes of secondary metabolites: hyperforins, a family of antimicrobial acylphloroglucinols; and hypericins, a family of phototoxic anthraquinones exhibiting antimicrobial, antiviral, and antiherbivore properties in vitro. To determine whether these compounds are part of the herbivore-specific inducible plant defense system, we used an in vitro detached assay to assess the effects of specialist and generalist herbivore damage on the levels of hypericins and hyperforin. Greenhouse-grown H. perforatum plant sections were challenged with the specialist, Chrysolina quadrigemina, or with one of the following generalist feeders: Spilosoma virginica, Spilosoma congrua, or Spodoptera exigua. Feeding by the specialist beetle or mechanical wounding caused little change in phytochemical levels in plant tissue, whereas the small amount of feeding by the generalists caused 30-100% increases in hypericins and hyperforin as compared to control levels. Although the leaf damage index of the specialist feeding was 2.7 times greater, C. quadrigemina had little effect on H. perforatum chemical defenses in response to feeding damage in comparison to generalist feeding.


Assuntos
Antibacterianos/análise , Inibidores Enzimáticos/análise , Hypericum/química , Perileno/análogos & derivados , Perileno/análise , Terpenos/análise , Adaptação Fisiológica , Animais , Antracenos , Bioensaio , Compostos Bicíclicos com Pontes , Besouros , Comportamento Alimentar , Larva , Mariposas , Floroglucinol/análogos & derivados , Plantas Comestíveis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA