Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nutrients ; 16(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38474754

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing healthcare problem with limited therapeutic options. Progress in this field depends on the availability of reliable preclinical models. Human precision-cut liver slices (PCLSs) have been employed to replicate the initiation of MASLD, but a comprehensive investigation into MASLD progression is still missing. This study aimed to extend the current incubation time of human PCLSs to examine different stages in MASLD. Healthy human PCLSs were cultured for up to 96 h in a medium enriched with high sugar, high insulin, and high fatty acids to induce MASLD. PCLSs displayed hepatic steatosis, characterized by accumulated intracellular fat. The development of hepatic steatosis appeared to involve a time-dependent impact on lipid metabolism, with an initial increase in fatty acid uptake and storage, and a subsequent down-regulation of lipid oxidation and secretion. PCLSs also demonstrated liver inflammation, including increased pro-inflammatory gene expression and cytokine production. Additionally, liver fibrosis was also observed through the elevated production of pro-collagen 1a1 and tissue inhibitor of metalloproteinase-1 (TIMP1). RNA sequencing showed that the tumor necrosis factor alpha (TNFα) signaling pathway and transforming growth factor beta (TGFß) signaling pathway were consistently activated, potentially contributing to the development of inflammation and fibrosis. In conclusion, the prolonged incubation of human PCLSs can establish a robust ex vivo model for MASLD, facilitating the identification and evaluation of potential therapeutic interventions.


Assuntos
Fígado Gorduroso , Doenças Metabólicas , Humanos , Avaliação Pré-Clínica de Medicamentos , Inibidor Tecidual de Metaloproteinase-1 , Inflamação
2.
Plant Cell Environ ; 39(6): 1366-80, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26670204

RESUMO

Sucrose accumulation in leaves in response to various abiotic stresses suggests a specific role of this disaccharide for stress tolerance and adaptation. The high-affinity transporter StSUT1 undergoes substrate-induced endocytosis presenting the question as to whether altered sucrose accumulation in leaves in response to stresses is also related to enhanced endocytosis or altered activity of the sucrose transporter. StSUT1 is known to interact with several stress-inducible proteins; here we investigated whether one of the interacting candidates, StPDI1, affects its subcellular localization in response to stress: StPDI1 expression is induced by ER-stress and salt. Both proteins, StSUT1 and StPDI1, were found in the detergent resistant membrane (DRM) fraction, and this might affect internalization. Knockdown of StPDI1 expression severely affects abiotic stress tolerance of transgenic potato plants. Analysis of these plants does not reveal modified subcellular localization or endocytosis of StSUT1, but rather a disturbed redox homeostasis, reduced detoxification of reactive oxygen species and effects on primary metabolism. Parallel observations with other StSUT1-interacting proteins are discussed. The redox status in leaves seems to be linked to the sugar status in response to various stress stimuli and to play a role in stress tolerance.


Assuntos
Homeostase , Proteínas de Transporte de Monossacarídeos/fisiologia , Oxirredução , Proteínas de Plantas/fisiologia , Isomerases de Dissulfetos de Proteínas/fisiologia , Sacarose/metabolismo , Clonagem Molecular , Técnicas de Silenciamento de Genes , Homeostase/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real , Solanum tuberosum/embriologia , Solanum tuberosum/fisiologia , Estresse Fisiológico/fisiologia
3.
Mol Plant ; 5(1): 43-62, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21746698

RESUMO

Organization of proteins into complexes is crucial for many cellular functions. Recently, the SUT1 protein was shown to form homodimeric complexes, to be associated with lipid raft-like microdomains in yeast as well as in plants and to undergo endocytosis in response to brefeldin A. We therefore aimed to identify SUT1-interacting proteins that might be involved in dimerization, endocytosis, or targeting of SUT1 to raft-like microdomains. Therefore, we identified potato membrane proteins, which are associated with the detergent-resistant membrane (DRM) fraction. Among the proteins identified, we clearly confirmed StSUT1 as part of DRM in potato source leaves. We used the yeast two-hybrid split ubiquitin system (SUS) to systematically screen for interaction between the sucrose transporter StSUT1 and other membrane-associated or soluble proteins in vivo. The SUS screen was followed by immunoprecipitation using affinity-purified StSUT1-specific peptide antibodies and mass spectrometric analysis of co-precipitated proteins. A large overlap was observed between the StSUT1-interacting proteins identified in the co-immunoprecipitation and the detergent-resistant membrane fraction. One of the SUT1-interacting proteins, a protein disulfide isomerase (PDI), interacts also with other sucrose transporter proteins. A potential role of the PDI as escort protein is discussed.


Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Solanum tuberosum/metabolismo , Sacarose/metabolismo , Membrana Celular/química , Membrana Celular/genética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Ligação Proteica , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/genética , Estrutura Terciária de Proteína , Solanum tuberosum/química , Solanum tuberosum/enzimologia , Solanum tuberosum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA