Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Geobiology ; 21(2): 168-174, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36471206

RESUMO

Phosphorus (P) is typically considered to be the ultimate limiting nutrient for Earth's biosphere on geologic timescales. As P is monoisotopic, its sedimentary enrichment can provide some insights into how the marine P cycle has changed through time. A previous compilation of shale P enrichments argued for a significant change in P cycling during the Ediacaran Period (635-541 Ma). Here, using an updated P compilation-with more than twice the number of samples-we bolster the case that there was a significant transition in P cycling moving from the Precambrian into the Phanerozoic. However, our analysis suggests this state change may have occurred earlier than previously suggested. Specifically in the updated database, there is evidence for a transition ~35 million years before the onset of the Sturtian Snowball Earth glaciation in the Visingsö Group, potentially divorcing the climatic upheavals of the Neoproterozoic from changes in the Earth's P cycle. We attribute the transition in Earth's sedimentary P record to the onset of a more modern-like Earth system state characterized by less reducing marine conditions, higher marine P concentrations, and a greater predominance of eukaryotic organisms encompassing both primary producers and consumers. This view is consistent with organic biomarker evidence for a significant eukaryotic contribution to the preserved sedimentary organic matter in this succession and other contemporaneous Tonian marine sedimentary rocks. However, we stress that, even with an expanded dataset, we are likely far from pinpointing exactly when this transition occurred or whether Earth's history is characterized by a single or multiple transitions in the P cycle.


Assuntos
Sedimentos Geológicos , Fósforo , Sedimentos Geológicos/análise , Eucariotos , Minerais
2.
Proc Natl Acad Sci U S A ; 116(39): 19352-19361, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31501322

RESUMO

The proliferation of large, motile animals 540 to 520 Ma has been linked to both rising and declining O2 levels on Earth. To explore this conundrum, we reconstruct the global extent of seafloor oxygenation at approximately submillion-year resolution based on uranium isotope compositions of 187 marine carbonates samples from China, Siberia, and Morocco, and simulate O2 levels in the atmosphere and surface oceans using a mass balance model constrained by carbon, sulfur, and strontium isotopes in the same sedimentary successions. Our results point to a dynamically viable and highly variable state of atmosphere-ocean oxygenation with 2 massive expansions of seafloor anoxia in the aftermath of a prolonged interval of declining atmospheric pO2 levels. Although animals began diversifying beforehand, there were relatively few new appearances during these dramatic fluctuations in seafloor oxygenation. When O2 levels again rose, it occurred in concert with predicted high rates of photosynthetic production, both of which may have fueled more energy to predators and their armored prey in the evolving marine ecosystem.


Assuntos
Atmosfera/química , Evolução Biológica , Ecossistema , Oxigênio/análise , Água do Mar/química , Animais , Carbonatos/química , Planeta Terra , Sedimentos Geológicos/química , Isótopos/análise , Oceanos e Mares , Fotossíntese , Tempo , Urânio/análise
3.
Nature ; 541(7637): 386-389, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28002400

RESUMO

The macronutrient phosphorus is thought to limit primary productivity in the oceans on geological timescales. Although there has been a sustained effort to reconstruct the dynamics of the phosphorus cycle over the past 3.5 billion years, it remains uncertain whether phosphorus limitation persisted throughout Earth's history and therefore whether the phosphorus cycle has consistently modulated biospheric productivity and ocean-atmosphere oxygen levels over time. Here we present a compilation of phosphorus abundances in marine sedimentary rocks spanning the past 3.5 billion years. We find evidence for relatively low authigenic phosphorus burial in shallow marine environments until about 800 to 700 million years ago. Our interpretation of the database leads us to propose that limited marginal phosphorus burial before that time was linked to phosphorus biolimitation, resulting in elemental stoichiometries in primary producers that diverged strongly from the Redfield ratio (the atomic ratio of carbon, nitrogen and phosphorus found in phytoplankton). We place our phosphorus record in a quantitative biogeochemical model framework and find that a combination of enhanced phosphorus scavenging in anoxic, iron-rich oceans and a nutrient-based bistability in atmospheric oxygen levels could have resulted in a stable low-oxygen world. The combination of these factors may explain the protracted oxygenation of Earth's surface over the last 3.5 billion years of Earth history. However, our analysis also suggests that a fundamental shift in the phosphorus cycle may have occurred during the late Proterozoic eon (between 800 and 635 million years ago), coincident with a previously inferred shift in marine redox states, severe perturbations to Earth's climate system, and the emergence of animals.


Assuntos
Evolução Biológica , Fósforo/metabolismo , Animais , Atmosfera/química , Carbono/metabolismo , Planeta Terra , Sedimentos Geológicos/química , História Antiga , Ferro/análise , Nitrogênio/metabolismo , Oxirredução , Oxigênio/metabolismo , Fósforo/história , Água do Mar/química
4.
Nature ; 469(7328): 80-3, 2011 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-21209662

RESUMO

Widespread anoxia in the ocean is frequently invoked as a primary driver of mass extinction as well as a long-term inhibitor of evolutionary radiation on early Earth. In recent biogeochemical studies it has been hypothesized that oxygen deficiency was widespread in subsurface water masses of later Cambrian oceans, possibly influencing evolutionary events during this time. Physical evidence of widespread anoxia in Cambrian oceans has remained elusive and thus its potential relationship to the palaeontological record remains largely unexplored. Here we present sulphur isotope records from six globally distributed stratigraphic sections of later Cambrian marine rocks (about 499 million years old). We find a positive sulphur isotope excursion in phase with the Steptoean Positive Carbon Isotope Excursion (SPICE), a large and rapid excursion in the marine carbon isotope record, which is thought to be indicative of a global carbon cycle perturbation. Numerical box modelling of the paired carbon sulphur isotope data indicates that these isotope shifts reflect transient increases in the burial of organic carbon and pyrite sulphur in sediments deposited under large-scale anoxic and sulphidic (euxinic) conditions. Independently, molybdenum abundances in a coeval black shale point convincingly to the transient spread of anoxia. These results identify the SPICE interval as the best characterized ocean anoxic event in the pre-Mesozoic ocean and an extreme example of oxygen deficiency in the later Cambrian ocean. Thus, a redox structure similar to those in Proterozoic oceans may have persisted or returned in the oceans of the early Phanerozoic eon. Indeed, the environmental challenges presented by widespread anoxia may have been a prevalent if not dominant influence on animal evolution in Cambrian oceans.


Assuntos
Sedimentos Geológicos/química , Oxigênio/análise , Água do Mar/química , Sulfetos/análise , Animais , Evolução Biológica , Ciclo do Carbono , Isótopos de Carbono/análise , Carbonatos/análise , Extinção Biológica , Fósseis , História Antiga , Ferro/análise , Ferro/química , Molibdênio/análise , Molibdênio/química , Oceanos e Mares , Oxirredução , Sulfetos/química , Isótopos de Enxofre/análise , Suécia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA