Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microbiology (Reading) ; 167(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34910617

RESUMO

Polyamines constitute a group of organic polycations positively charged at physiological pH. They are involved in a large variety of biological processes, including the protection against physiological stress. In this study, we show that the genome of Streptococcus agalactiae, a commensal bacterium of the intestine and the vagina and one of the most common agents responsible of neonate infections, does not encode proteins homologous to the specific enzymes involved in the known polyamine synthetic pathways. This lack of biosynthetic capability was verified experimentally by TLC analysis of the intracellular content of S. agalactiae grown in the absence of polyamines. However, similar analyses showed that the polyamines spermidine, spermine and putrescine can be imported from the growth media into the bacteria. We found that all strains of S. agalactiae possess the genes encoding the polyamine ABC transporter PotABCD. We demonstrated that these genes form an operon with folK, a gene involved in folate biosynthesis, murB, a gene involved in peptidoglycan biosynthesis, and with clc, a gene encoding a Cl-/H+ antiporter involved in resistance to acid stress in Escherichia coli. Transcription of the potABCD operon is induced by peroxide-induced oxidative stress but not by acidic stress. Spermidine and spermine were found to be inducers of potABCD transcription at pH 7.4 whereas putrescine induces this expression only during peroxide-induced oxidative stress. Using a deletion mutant of potABCD, we were nevertheless unable to associate phenotypic traits to the PotABCD transporter, probably due to the existence of one or more as yet identified transporters with a redundant action.


Assuntos
Poliaminas , Streptococcus agalactiae , Transporte Biológico , Humanos , Recém-Nascido , Proteínas de Membrana Transportadoras/genética , Poliaminas/metabolismo , Putrescina/metabolismo , Espermidina/metabolismo , Streptococcus agalactiae/genética , Streptococcus agalactiae/metabolismo
2.
Gene ; 720: 144094, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31476407

RESUMO

Fourteen different insertion sequences belonging to seven families were identified in the genome of Streptococcus agalactiae. Among them, IS1548, a mobile element of the ISAs1 family, was linked to clonal complex (CC) 19 strains associated with neonatal meningitis and endocarditis. IS1548 impacts S. agalactiae in two reported ways: i) inactivation of virulence genes by insertion in an open reading frame (e.g. hylB or cpsD), ii) positive modulation of the expression of a downstream gene by insertion in an intergenic region (e.g. lmb). We previously identified an unknown integration site of IS1548 in the intergenic region between the folK and the murB genes involved in folate and peptidoglycan biosynthesis, respectively. In this work, we analyzed the prevalence of IS1548 in a large collection of nine hundred and eleven S. agalactiae strains. IS1548 positive strains belong to twenty-nine different sequence types and to ten CCs. The majority of them were, however, clustered within sequence type 19 and sequence type 22, belonging to CC19 and CC22, respectively. In contrast, IS1548 targets the folK-murB intergenic region exclusively in CC19 strains. We evaluated the impact of the insertion of IS1548 on the expression of murB by locating transcriptional promoters influencing its expression in the presence or absence of IS1548 and by comparative ß-galactosidase transcriptional fusion assays. We found that in the absence of IS1548, genes involved in folate biosynthesis are co-transcribed with murB. As it was postulated that a folic acid mediated reaction may be involved in cell wall synthesis, this co-transcription could be necessary to synchronize these two processes. The insertion of IS1548 in the folK-murB intergenic region disrupt this co-transcription. Interestingly, we located a promoter at the right end of IS1548 that is able to initiate additional transcripts of murB. The insertion of IS1548 in this region has thus a dual and divergent impact on the expression of murB. By comparative ß-galactosidase transcriptional fusion assays, we showed that, consequently, the overall impact of the insertion of IS1548 results in a minor decrease of murB gene transcription. This study provides new insights into gene expression effects mediated by IS1548 in S. agalactiae.


Assuntos
Proteínas de Bactérias/genética , DNA Intergênico , Regulação Bacteriana da Expressão Gênica , Sequências Repetitivas Dispersas , Mutagênese Insercional , Peptidoglicano/biossíntese , Streptococcus agalactiae/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , DNA Bacteriano/genética , Regiões Promotoras Genéticas , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/crescimento & desenvolvimento , Streptococcus agalactiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA