Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomolecules ; 14(2)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397478

RESUMO

The serine peptidase CLPP is conserved among bacteria, chloroplasts, and mitochondria. In humans and mice, its loss causes Perrault syndrome, which presents with growth deficits, infertility, deafness, and ataxia. In the filamentous fungus Podospora anserina, CLPP loss leads to longevity. CLPP substrates are selected by CLPX, an AAA+ unfoldase. CLPX is known to target delta-aminolevulinic acid synthase (ALAS) to promote pyridoxal phosphate (PLP) binding. CLPX may also influence cofactor association with other enzymes. Here, the evaluation of P. anserina metabolomics highlighted a reduction in arginine/histidine levels. In Mus musculus cerebellum, reductions in arginine/histidine and citrulline occurred with a concomitant accumulation of the heme precursor protoporphyrin IX. This suggests that the increased biosynthesis of 5-carbon (C5) chain deltaALA consumes not only C4 succinyl-CoA and C1 glycine but also specific C5 delta amino acids. As enzymes responsible for these effects, the elevated abundance of CLPX and ALAS is paralleled by increased OAT (PLP-dependent, ornithine delta-aminotransferase) levels. Possibly as a consequence of altered C1 metabolism, the proteome profiles of P. anserina CLPP-null cells showed strong accumulation of a methyltransferase and two mitoribosomal large subunit factors. The reduced histidine levels may explain the previously observed metal interaction problems. As the main nitrogen-storing metabolite, a deficiency in arginine would affect the urea cycle and polyamine synthesis. Supplementation of arginine and histidine might rescue the growth deficits of CLPP-mutant patients.


Assuntos
Avena , Eucariotos , Animais , Camundongos , Arginina , Avena/metabolismo , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Eucariotos/metabolismo , Heme/metabolismo , Histidina , Transportadores de Ânions Orgânicos
2.
Neuroimage Clin ; 4: 82-97, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24319656

RESUMO

Voice and speech in Parkinson's disease (PD) patients are classically affected by a hypophonia, dysprosody, and dysarthria. The underlying pathomechanisms of these disabling symptoms are not well understood. To identify functional anomalies related to pathophysiology and compensation we compared speech-related brain activity and effective connectivity in early PD patients who did not yet develop voice or speech symptoms and matched controls. During fMRI 20 PD patients ON and OFF levodopa and 20 control participants read 75 sentences covertly, overtly with neutral, or with happy intonation. A cue-target reading paradigm allowed for dissociating task preparation from execution. We found pathologically reduced striato-prefrontal preparatory effective connectivity in early PD patients associated with subcortical (OFF state) or cortical (ON state) compensatory networks. While speaking, PD patients showed signs of diminished monitoring of external auditory feedback. During generation of affective prosody, a reduced functional coupling between the ventral and dorsal striatum was observed. Our results suggest three pathomechanisms affecting speech in PD: While diminished energization on the basis of striato-prefrontal hypo-connectivity together with dysfunctional self-monitoring mechanisms could underlie hypophonia, dysarthria may result from fading speech motor representations given that they are not sufficiently well updated by external auditory feedback. A pathological interplay between the limbic and sensorimotor striatum could interfere with affective modulation of speech routines, which affects emotional prosody generation. However, early PD patients show compensatory mechanisms that could help improve future speech therapies.


Assuntos
Biorretroalimentação Psicológica , Encéfalo/patologia , Doença de Parkinson/patologia , Distúrbios da Fala/patologia , Distúrbios da Voz/patologia , Idoso , Antiparkinsonianos/uso terapêutico , Encéfalo/irrigação sanguínea , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Levodopa/uso terapêutico , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Oxigênio/sangue , Doença de Parkinson/complicações , Doença de Parkinson/tratamento farmacológico , Psicoacústica , Leitura , Distúrbios da Fala/etiologia , Distúrbios da Voz/etiologia
3.
Neurobiol Aging ; 33(2): 393-403, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20363052

RESUMO

Many neurodegenerative disorders including Parkinson's disease (PD) and Alzheimer's disease (AD) are associated with sleep disturbances with presumably multifactorial etiology. Ubiquitin C-terminal hydrolase L1 (UCH-L1) is involved in the pathophysiology of PD and AD. In the present study, we analyzed locomotor rhythms, orexin A-immunoreaction (Ir) in the lateral hypothalamus (LH) and melanopsin-Ir in the retina of gracile axonal dystrophy (gad) mice with a spontaneous deletion in the Uch-l1 gene. In constant darkness, gad mice showed circadian rhythms in locomotor activity, indicating the integrity of the endogenous circadian rhythm generator. However, gad mice showed an increased activity during subjective day and a decreased number of orexin A-immunoreactive neurons in the LH compared with the wild type (WT). In addition, gad mice showed increased locomotor activity in the light period when kept in a standard photoperiod and entrainment to phase shifts was significantly slower than in WT. Moreover, melanopsin-Ir was significantly reduced in the retina of gad mice, suggesting an impairment of circadian light perception in gad mice.


Assuntos
Transtornos Cronobiológicos/fisiopatologia , Ritmo Circadiano , Hipotálamo/fisiopatologia , Neurônios , Retina/fisiopatologia , Transtornos do Sono-Vigília/fisiopatologia , Ubiquitina Tiolesterase/metabolismo , Animais , Relógios Biológicos , Transtornos Cronobiológicos/complicações , Deleção de Genes , Hipotálamo/patologia , Transdução de Sinal Luminoso , Locomoção , Masculino , Camundongos , Camundongos Knockout , Retina/patologia , Transtornos do Sono-Vigília/complicações , Ubiquitina Tiolesterase/genética
4.
Nat Med ; 8(5): 514-7, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11984597

RESUMO

The only proven requirement for ascorbic acid (vitamin C) is in preventing scurvy, presumably because it is a cofactor for hydroxylases required for post-translational modifications that stabilize collagen. We have created mice deficient in the mouse ortholog (solute carrier family 23 member 1 or Slc23a1) of a rat ascorbic-acid transporter, Svct2 (ref. 4). Cultured embryonic fibroblasts from homozygous Slc23a1(-/-) mice had less than 5% of normal ascorbic-acid uptake. Ascorbic-acid levels were undetectable or markedly reduced in the blood and tissues of Slc23a1(-/-) mice. Prenatal supplementation of pregnant females did not elevate blood ascorbic acid in Slc23a1(-/-) fetuses, suggesting Slc23a1 is important in placental ascorbic-acid transport. Slc23a1(-/-) mice died within a few minutes of birth with respiratory failure and intraparenchymal brain hemorrhage. Lungs showed no postnatal expansion but had normal surfactant protein B levels. Brain hemorrhage was unlikely to be simply a form of scurvy since Slc23a1(-/-) mice showed no hemorrhage in any other tissues and their skin had normal skin 4-hydroxyproline levels despite low ascorbic-acid content. We conclude that Slc23a1 is required for transport of ascorbic acid into many tissues and across the placenta. Deficiency of the transporter is lethal in newborn mice, thereby revealing a previously unrecognized requirement for ascorbic acid in the perinatal period.


Assuntos
Ácido Ascórbico/metabolismo , Encéfalo/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Simportadores , Animais , Desenvolvimento Embrionário e Fetal , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes Essenciais , Humanos , Camundongos , Camundongos Knockout , Transportadores de Ânions Orgânicos Dependentes de Sódio/deficiência , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Mapeamento por Restrição , Transportadores de Sódio Acoplados à Vitamina C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA