Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35955476

RESUMO

Male infertility is a major public health issue that can be induced by a host of lifestyle risk factors such as environment, nutrition, smoking, stress, and endocrine disruptors. Regarding the human population exposed to uranium, it is necessary to explore these effects on male reproduction in multigenerational studies. The sensitivity of mass spectrometry (MS)-based methods has already proved to be extremely useful in metabolite identification in rats exposed to low doses of uranium, but also in human sperm. We applied this method to rat sperm over three generations (F0, F1 and F2) with multigenerational uranium exposure. Our results show a significant content of uranium in generation F0, and a reduction in the pregnancy rate only in generation F1. Based on principal component analysis (PCA), we observed discriminant profiles between generations. The partial least squares discriminant analysis (PLS-DA) of the 48 annotated variables confirmed that parental exposure of generation F0 (during both the preconceptional and prenatal periods) can have metabolic effects on spermatozoa for the next two generations. Metabolomics applied to epididymal spermatozoa is a novel approach to detecting the multigenerational effects of uranium in an experimental model, but could be also recommended to identify potential biomarkers evaluating the impact of uranium on sperm in exposed infertile men.


Assuntos
Disruptores Endócrinos , Urânio , Animais , Disruptores Endócrinos/farmacologia , Feminino , Humanos , Masculino , Metaboloma , Gravidez , Ratos , Reprodução , Sêmen , Espermatozoides , Urânio/toxicidade
2.
C R Biol ; 342(5-6): 175-185, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31471143

RESUMO

There is increasing evidence that environmental exposures early in fetal development influence phenotype and give rise to disease risk in the next generations. We previously found that lifelong exposure to uranium, an environmental contaminant, induced subtle testicular and hormonal defects; however, its impact on the reproductive system of multiple subsequent generations was unexplored. Herein, rats were exposed to a supra-environmental and non-nephrotoxic concentration of natural uranium (U, 40 mg·L-1 of drinking water) from postnatal life to adulthood (F0), during fetal life (F1), and only as the germ cells from the F1 generation (F2). General parameters (reproductive indices, epididymal weight) and sperm morphology were assessed in the three generations. In order to identify the epigenetic effects of U, we analyzed also the global DNA methylation profile and described for the first time the mRNA expression levels of markers involved in the (de)methylation system in rat epididymal spermatozoa. Our results showed that the F1 generation had a reduced pregnancy rate. Despite the sperm number being unmodified, sperm morphology was affected in the F0, F1 and F2 generations. Morphometric analysis for ten parameters was detailed for each generation. No common parameter was detected between the three generations, but the head and the middle-piece were always modified in the abnormal sperms. In the F1 U-exposed generation, the total number of abnormal sperm was significantly higher than in the F0 and F2 generations, suggesting that fetal exposure to uranium was more deleterious. This effect could be associated with the pregnancy rate to produce the F2 generation. Interestingly, global DNA methylation analysis showed also hypomethylation in the sperm DNA of the last F2 generation. In conclusion, our study demonstrates that uranium can induce morphological sperm defects and changes in the DNA methylation level after multigenerational exposure. The epigenetic transgenerational inheritance of U-induced reproductive defects should be assessed in further experiments.


Assuntos
Metilação de DNA/efeitos da radiação , Espermatozoides/efeitos da radiação , Espermatozoides/ultraestrutura , Urânio/toxicidade , Animais , DNA/efeitos da radiação , Poluição Ambiental , Epididimo/patologia , Epididimo/efeitos da radiação , Epigênese Genética/efeitos da radiação , Feminino , Feto/efeitos da radiação , Células Germinativas/efeitos da radiação , Masculino , Gravidez , Ratos , Ratos Sprague-Dawley , Reprodução/efeitos da radiação
3.
Int J Radiat Biol ; 95(6): 737-752, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30714840

RESUMO

Purpose: To examine the effects of low-dose exposure to uranium with a systems biology approach, a multiscale high-throughput multi-omics analysis was applied with a protocol for chronic exposure to the rat kidney. Methods: Male and female rats were contaminated for nine months through their drinking water with a nontoxic solution of uranyl nitrate. A multiscale approach enabled clinical monitoring associated with metabolomic and transcriptomic (mRNA and microRNA) analyses. Results: A sex-interaction effect was observed in the kidney, urine, and plasma metabolomes of contaminated rats. Moreover, urine and kidney metabolic profiles correlated and confirmed that the primary dysregulated metabolisms are those of nicotinate-nicotinamide and of unsaturated fatty acid biosynthesis. Upstream of the metabolic pathways, transcriptomic profiles of the kidney reveal gene activity focused on gene regulation mechanisms, cell signaling, cell structure, developmental processes, and cell proliferation. Examination of epigenetic post-transcriptional gene regulation processes showed significant dysregulation of 70 micro-RNAs. The multi-omics approach highlighted the activities of the cells' biological processes on multiple scales through analysis of gene expression, confirmed by changes observed in the metabolome. Conclusion: Our results showed changes in multi-omic profiles of rats exposed to low doses of uranium contamination, compared with controls. These changes involved gene expression as well as modifications in the transcriptome and the metabolome. The metabolomic profile confirmed that the main molecular targets of uranium in kidney cells are the metabolism of nicotinate-nicotinamide and the biosynthesis of unsaturated fatty acids. Additionally, gene expression analysis showed that the metabolism of fatty acids is targeted by processes associated with cell function. These results demonstrate that multiscale systems biology is useful in elucidating the most discriminative pathways from genomic to metabolomic levels for assessing the biological impact of this low-level environmental exposure, i.e. the exposome.


Assuntos
Rim/metabolismo , Rim/efeitos da radiação , Biologia de Sistemas , Urânio/efeitos adversos , Animais , Biomarcadores/metabolismo , Relação Dose-Resposta à Radiação , Feminino , Masculino , Metabolômica , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Transcriptoma/efeitos da radiação
4.
Int J Radiat Biol ; 94(11): 975-984, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29962262

RESUMO

PURPOSE: A protocol of chronic exposure to low dose of uranium was established in order to distinguish the sexual differences and the developmental process that are critical windows for epigenetic effects over generations. METHODS: Both male and female rats were contaminated through their drinking water with a non-toxic solution of uranyl nitrate for 9 months. The exposed generation (F0) and the following two generations (F1 and F2) were examined. Clinical monitoring, global DNA methylation profile and DNA methyltransferases (DNMTs) gene expression were analyzed in kidneys. RESULTS: While the body weight of F1 males increased, a small decrease in kidney and body weight was observed in F2 males. In addition, global DNA hypermethylation profile in kidney cells was observed in F1 and F2 males. qPCR results reveal a significant increase of methyltransferase genes expression (DNMT1 and DNMT3a) for F2 females. CONCLUSIONS: In the field of public health policy and to raise attention to generational effects for the risk assessment of the environmental exposures, low doses of uranium do not imply clinical effects on adult exposed rats. However, our results confirm the importance of the developmental windows' sensitivity in addition to the sexual dimorphisms of the offspring.


Assuntos
Epigênese Genética/efeitos da radiação , Rim/efeitos da radiação , Urânio/efeitos adversos , Animais , Peso Corporal/efeitos dos fármacos , Metilação de DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Feminino , Masculino , Gravidez , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA