Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Biol ; 16(10): e2005924, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30335746

RESUMO

The heart exhibits the highest basal oxygen (O2) consumption per tissue mass of any organ in the body and is uniquely dependent on aerobic metabolism to sustain contractile function. During acute hypoxic states, the body responds with a compensatory increase in cardiac output that further increases myocardial O2 demand, predisposing the heart to ischemic stress and myocardial dysfunction. Here, we test the utility of a novel engineered protein derived from the heme-based nitric oxide (NO)/oxygen (H-NOX) family of bacterial proteins as an O2 delivery biotherapeutic (Omniox-cardiovascular [OMX-CV]) for the hypoxic myocardium. Because of their unique binding characteristics, H-NOX-based variants effectively deliver O2 to hypoxic tissues, but not those at physiologic O2 tension. Additionally, H-NOX-based variants exhibit tunable binding that is specific for O2 with subphysiologic reactivity towards NO, circumventing a significant toxicity exhibited by hemoglobin (Hb)-based O2 carriers (HBOCs). Juvenile lambs were sedated, mechanically ventilated, and instrumented to measure cardiovascular parameters. Biventricular admittance catheters were inserted to perform pressure-volume (PV) analyses. Systemic hypoxia was induced by ventilation with 10% O2. Following 15 minutes of hypoxia, the lambs were treated with OMX-CV (200 mg/kg IV) or vehicle. Acute hypoxia induced significant increases in heart rate (HR), pulmonary blood flow (PBF), and pulmonary vascular resistance (PVR) (p < 0.05). At 1 hour, vehicle-treated lambs exhibited severe hypoxia and a significant decrease in biventricular contractile function. However, in OMX-CV-treated animals, myocardial oxygenation was improved without negatively impacting systemic or PVR, and both right ventricle (RV) and left ventricle (LV) contractile function were maintained at pre-hypoxic baseline levels. These data suggest that OMX-CV is a promising and safe O2 delivery biotherapeutic for the preservation of myocardial contractility in the setting of acute hypoxia.


Assuntos
Heme/uso terapêutico , Hipóxia/terapia , Oxigênio/uso terapêutico , Animais , Terapia Biológica/métodos , Coração/fisiologia , Frequência Cardíaca/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Pulmão , Contração Muscular/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Miocárdio/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/uso terapêutico , Oxigênio/metabolismo , Consumo de Oxigênio/fisiologia , Engenharia de Proteínas/métodos , Ovinos , Resistência Vascular/efeitos dos fármacos
2.
J Clin Pharmacol ; 56(8): 1009-18, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26712409

RESUMO

Conducting and analyzing clinical trials in vulnerable neonates are extremely challenging. The aim of this analysis is to develop a morphine population pharmacokinetics (PK) model using data collected during a randomized control trial in neonates with abstinence syndrome (NAS). A 3-compartment morphine structural PK model after intravenous (IV) administration from previously published work was utilized as prior, whereas an allometric scaling method with physiological consideration was used to extrapolate a PK profile from adults to pediatrics. The absorption rate constant and bioavailability were estimated in NAS after oral administration of diluted tincture of opium (DTO). Goodness-of-fit plots along with normalized prediction distribution error and bootstrap method were performed for model evaluation. We successfully extrapolated the PK profile from adults to pediatrics after IV administration. The estimated first-order absorption rate constant and bioavailability were 0.751 hour(-1) and 48.5%, respectively. Model evaluations showed that the model can accurately and precisely describe the observed data. The population pharmacokinetic model we derived for morphine after oral administration of DTO is reasonable and acceptable; therefore, it can be used to describe the PK and guide future studies. The integration of the previous population PK knowledge as prior information successfully overcomes the logistic and practical issue in vulnerable neonate population.


Assuntos
Analgésicos Opioides/sangue , Morfina/sangue , Síndrome de Abstinência Neonatal/sangue , Síndrome de Abstinência Neonatal/tratamento farmacológico , Ópio/sangue , Administração Oral , Adulto , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/química , Composição de Medicamentos , Feminino , Humanos , Recém-Nascido , Masculino , Morfina/administração & dosagem , Morfina/farmacocinética , Ópio/administração & dosagem , Ópio/química , Ópio/farmacocinética
3.
Annu Rev Pharmacol Toxicol ; 49: 291-301, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18851702

RESUMO

Quantitative disease-drug-trial models allow learning from prior experience and summarize the knowledge in a ready to apply format. Employing these models to plan future development is proposed as a powerful solution to improve pharmaceutical R&D productivity. The disease and trial models are, to a large extent, independent of the product, but the drug model is not. The goals are to apply the disease and trial models to future development and regulatory decisions, and publicly share them. We propose working definitions of these models, describe the various subcomponents, provide examples, and discuss the challenges and potential solutions for developing such models. Building useful disease-drug-trial models is a challenging task and cannot be achieved by any single organization. It requires a consorted effort by industry, academic, and regulatory scientists. We also describe the strategic goals of the FDA Pharmacometrics group.


Assuntos
Desenho de Fármacos , Tratamento Farmacológico , Modelos Teóricos , Animais , Ensaios Clínicos Fase III como Assunto , Avaliação Pré-Clínica de Medicamentos , Indústria Farmacêutica , Humanos , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/metabolismo , Farmacocinética , Estados Unidos , United States Food and Drug Administration
4.
Clin Cancer Res ; 12(18): 5329-35, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-17000665

RESUMO

PURPOSE: To describe the clinical studies, chemistry manufacturing and controls, and clinical pharmacology and toxicology that led to Food and Drug Administration approval of nelarabine (Arranon) for the treatment of T-cell acute lymphoblastic leukemia/lymphoblastic lymphoma. EXPERIMENTAL DESIGN: Two phase 2 trials, one conducted in pediatric patients and the other in adult patients, were reviewed. The i.v. dose and schedule of nelarabine in the pediatric and adult studies was 650 mg/m2/d daily for 5 days and 1,500 mg/m2 on days 1, 3, and 5, respectively. Treatments were repeated every 21 days. Study end points were the rates of complete response (CR) and CR with incomplete hematologic or bone marrow recovery (CR*). RESULTS: The pediatric efficacy population consisted of 39 patients who had relapsed or had been refractory to two or more induction regimens. CR to nelarabine treatment was observed in 5 (13%) patients and CR+CR* was observed in 9 (23%) patients. The adult efficacy population consisted of 28 patients. CR to nelarabine treatment was observed in 5 (18%) patients and CR+CR* was observed in 6 (21%) patients. Neurologic toxicity was dose limiting for both pediatric and adult patients. Other severe toxicities included laboratory abnormalities in pediatric patients and gastrointestinal and pulmonary toxicities in adults. CONCLUSIONS: On October 28, 2005, the Food and Drug Administration granted accelerated approval for nelarabine for treatment of patients with relapsed or refractory T-cell acute lymphoblastic leukemia/lymphoblastic lymphoma after at least two prior regimens. This use is based on the induction of CRs. The applicant will conduct postmarketing clinical trials to show clinical benefit (e.g., survival prolongation).


Assuntos
Arabinonucleosídeos/uso terapêutico , Aprovação de Drogas , Leucemia-Linfoma de Células T do Adulto/tratamento farmacológico , Linfoma de Células T/tratamento farmacológico , United States Food and Drug Administration , Animais , Arabinonucleosídeos/efeitos adversos , Arabinonucleosídeos/síntese química , Arabinonucleosídeos/farmacologia , Cães , Aprovação de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Haplorrinos , Humanos , Taxa de Depuração Metabólica , Camundongos , Modelos Biológicos , Coelhos , Ratos , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA