RESUMO
New neurons are incorporated into the adult brains of a variety of organisms, from humans and higher vertebrates, to non-vertebrates such as crustaceans. In virtually all of these systems serotonergic pathways appear to provide important regulatory influences over the machinery producing the new neurons. We have developed an in vitro preparation where adult neurogenesis can be maintained under highly controlled conditions, and are using this to test the influence of hormones on the production of neurons in the crustacean (Homarus americanus) brain. Serotonin levels have been manipulated in this in vitro preparation, and the resulting effects on the rate of neurogenesis have been documented. In addition we have compared in vitro influences of serotonin with results acquired from in vivo exposure of whole animals to serotonin. These experiments suggest that there are multiple mechanisms and pathways by which serotonin may regulate neurogenesis in the crustacean brain: (1) serotonin is effective in regulating neurogenesis at levels as low as 10(-10)M, suggesting that circulating serotonin may have hormonal influences on neuronal precursor cells residing in a vascular niche or the proliferation zones; (2) contrasting effects of serotonin on neurogenesis (up- vs. down-regulation) at high concentrations (10(-4)M), dependent upon whether eyestalk tissue is present or absent, indicate that serotonin elicits the release of substances from the sinus glands that are capable of suppressing neurogenesis; (3) previously demonstrated (Beltz, B.S., Benton, J.L., Sullivan, J.M., 2001. Transient uptake of serotonin by newborn olfactory projection neurons. Proc. Natl. Acad. Sci. USA 98, 12730-12735) serotonergic fibers from the dorsal giant neuron project directly into the proliferation zone in Cluster 10, suggest synaptic or local influences on neurogenesis in the proliferation zones where the final cell divisions and neuronal differentiation occur. Serotonin therefore regulates neurogenesis by multiple pathways, and the specific mode of influence is concentration-dependent.
Assuntos
Encéfalo/fisiologia , Nephropidae/fisiologia , Neurônios/fisiologia , Serotonina/farmacologia , Serotonina/fisiologia , Animais , Bromodesoxiuridina/farmacologia , Proliferação de Células/efeitos dos fármacos , Imuno-Histoquímica , Microscopia ConfocalRESUMO
This study examined whether serotonin levels in the brain of the American lobster, Homarus americanus, are under circadian control. Using high-performance liquid chromatography and semi-quantitative immunocytochemical methods, we measured serotonin levels in the brains of lobsters at six time points during a 24-h period. Lobsters were maintained for 2 weeks on a 12 h:12 h light:dark cycle followed by 3 days of constant darkness. Under these conditions, brain serotonin levels varied rhythmically, with a peak before subjective dusk and a trough before subjective dawn. This persistent circadian rhythm in constant darkness indicates that serotonin levels are controlled by an endogenous clock. Animals exposed to a shifted light cycle for >10 days, followed by 3 days in constant darkness, demonstrate that this rhythm is light entrainable. Separate analyses of two pairs of large deutocerebral neuropils, the accessory and olfactory lobes, show that serotonin levels in these functionally distinct areas also exhibit circadian rhythms but that these rhythms are out of phase with one another. The olfactory and accessory lobe rhythms are also endogenous and light entrainable, suggesting the presence of multiple clock mechanisms regulating serotonin levels in different brain regions.