Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-13, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38321959

RESUMO

Medicinal plants play an important role as antimicrobials by inhibiting various key targets of diverse microorganisms. A major antimicrobial component of plants is its essential oil, which are increasingly being studied for their antimicrobial properties as well as for their potential role in the inhibition of biofilm formation. In the present study, essential oil from Kaempferia galanga L was isolated resulting in the identification of eleven compounds. Of these, two of the compounds, γ-elemene and caryophyllene were found to dock with the target proteins, CrtM and SarA of Staphylococcus aureus, which are essential for the formation of biofilm. γ-elemene demonstrated the best binding affinity with CrtM with binding energy of -8.1 kcal/mol whereas caryophyllene and its derivative isocaryophyllene showed the best binding with SarA with binding energy -6.1 kcal/mol. ADMET study of the compounds also revealed that the compounds are non-toxic and can be used as probable compounds for inhibition of biofilms. Molecular dynamic simulation studies revealed high affinity of binding and stability of the molecules with their targets. PCA analysis helped in identifying the principal motions occurring within a trajectory that are essential in inducing conformational changes.Communicated by Ramaswamy H. Sarma.

2.
Chem Biodivers ; 21(1): e202301299, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38047518

RESUMO

Allium hookeri (F: Liliaceae), an indigenous plant of Manipur, India, is traditionally used to treat various diseases and disorders like diabetes, hypertension, and stomach ache. In our previous study, the methanol extract of the plant showed significant antidiabetic potential in rats. In the present study, we evaluated the antidiabetic potential of a flavonoid compound named MEA isolated from the methanolic leaf extract of A. Hookeri in rats. Additionally, we assessed the compound's mode of action through the molecular docking study. The MEA reduced the blood glucose level from 317±12.8 to 99.4±6.67 mg/dl after 21 days of treatment. Besides, MEA also restored the body weights and other biochemical parameters including lipid profile significantly compared to the diabetic group (p<0.001). The histoarchitecture of the pancreatic tissues of the MEA treated group was also improved compared to the diabetic group. In the docking study, the compound showed good binding affinity in the active binding site of the two structures of pancreatic beta-cell SUR1 (Sulfonylurea Receptor 1) subunit with CDocker energy -31.556 kcal/mol and -39.703 kcal/mol, respectively. The compound MEA was found to be drug-like with non-carcinogenic, non-mutagenic and non-irritant properties. These findings indicate the antidiabetic potential of MEA, which might act by modulating the pancreatic beta-cell SUR1 subunit present in the KATP channel. Hence, the MEA would be a promising lead molecule to develop new antidiabetic drug candidates of the future.


Assuntos
Allium , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratos , Animais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Allium/química , Extratos Vegetais , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Simulação de Acoplamento Molecular , Diabetes Mellitus Experimental/metabolismo , Índia , Metanol , Diabetes Mellitus Tipo 2/tratamento farmacológico
3.
Comb Chem High Throughput Screen ; 25(2): 292-306, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33461455

RESUMO

BACKGROUND: Malaria is caused by different species of Plasmodium; among which P. falciparum is the most severe. Coptis teeta is an ethnomedicinal plant of enormous importance for tribes of northeast India. OBJECTIVE: In this study, the antimalarial activity of the methanol extracts of Coptis teeta was evaluated in vitro and lead identification was carried out via in silico study. METHODS: On the basis of the in vitro results, in silico analysis by application of different modules of Discovery Studio 2018 was performed on multiple targets of P. falciparum taking into consideration some of the compounds reported from C. teeta. RESULTS: The IC50 of the methanol extract of Coptis teeta was reported to be 0.08 µg/ml in 3D7 strain and 0.7 µg/ml in Dd2 strain of P. falciparum. From the docking study, noroxyhydrastatine was observed to have better binding affinity in comparison to chloroquine. The binding of noroxyhydrastinine with dihydroorotate dehydrogenase was further validated by molecular dynamics simulation and was observed to be significantly stable in comparison to the co-crystal inhibitor. During simulations, it was observed that noroxyhydrastinine retained the interactions, giving strong indications of its effectiveness against the P. falciparum proteins and stability in the binding pocket. From the Density-functional theory analysis, the bandgap energy of noroxyhydrastinine was found to be 0.186 Ha, indicating a favorable interaction. CONCLUSION: The in silico analysis as an addition to the in vitro results provides strong evidence of noroxyhydrastinine as an antimalarial agent.


Assuntos
Antimaláricos , Coptis , Antimaláricos/química , Antimaláricos/farmacologia , Coptis/química , Simulação de Dinâmica Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Plasmodium falciparum
4.
J Biomol Struct Dyn ; 40(17): 8004-8017, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-33769188

RESUMO

The incurable Type 2 diabetes mellitus (T2DM) has now been considered a pandemic with only supportive care in existence. Due to the adverse effects of available anti-diabetic drugs, there arises a great urgency to develop new drug molecules. One of the alternatives that can be considered for the treatment of T2DM are natural compounds from traditionally used herbal medicine. The present study undertakes, an integrated multidisciplinary concept of Network Pharmacology to evaluate the efficacy of potent anti-diabetic compound from traditionally used anti-diabetic plants of north east India and followed by DFT analysis. In the course of the study, 22 plant species were selected on the basis of their use in traditional medicine for the treatment of T2DM by various ethnic groups of the north eastern region of India. Initially, a library of 1053 compounds derived from these plants was generated. This was followed by network preparation between compounds and targets based on the docking result. The compounds having the best network property were considered for DFT analysis. We have identified that auraptene, a monoterpene coumarin for its activity in the management of Type 2 diabetes mellitus and deciphered its unexplored probable mechanisms. Molecular dynamics simulation of the ligand-protein complexes also reveals the stable binding of auraptene with the target proteins namely, Protein Kinase C θ, Glucocorticoid receptor, 11-ß hydroxysteroid dehydrogenase 1 and Aldose Reductase, all of which form uniform interactions throughout the MD simulation trajectory. Therefore, this finding could provide new insights for the development of a new anti-diabetic drug.Communicated by Ramaswamy H. Sarma.


Assuntos
Diabetes Mellitus Tipo 2 , Medicamentos de Ervas Chinesas , Aldeído Redutase , Cumarínicos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Ensaios de Triagem em Larga Escala , Humanos , Hidroxiesteroide Desidrogenases , Ligantes , Simulação de Acoplamento Molecular , Monoterpenos , Farmacologia em Rede , Proteína Quinase C-theta , Receptores de Glucocorticoides
5.
Mol Divers ; 25(3): 1963-1977, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33856591

RESUMO

The Coronavirus disease 2019 (COVID-19), caused by the novel coronavirus, SARS-CoV-2, has recently emerged as a pandemic. Here, an attempt has been made through in-silico high throughput screening to explore the antiviral compounds from traditionally used plants for antiviral treatments in India namely, Tea, Neem and Turmeric, as potential inhibitors of two widely studied viral proteases, main protease (Mpro) and papain-like protease (PLpro) of the SARS-CoV-2. Molecular docking study using BIOVIA Discovery Studio 2018 revealed, (-)-epicatechin-3-O-gallate (ECG), a tea polyphenol has a binding affinity toward both the selected receptors, with the lowest CDocker energy - 46.22 kcal mol-1 for SARS-CoV-2 Mpro and CDocker energy - 44.72 kcal mol-1 for SARS-CoV-2 PLpro, respectively. The SARS-CoV-2 Mpro complexed with (-)-epicatechin-3-O-gallate, which had shown the best binding affinity was subjected to molecular dynamics simulations to validate its binding affinity, during which, the root-mean-square-deviation values of SARS-CoV-2 Mpro-Co-crystal ligand (N3) and SARS-CoV-2 Mpro- (-)-epicatechin-3-O-gallate systems were found to be more stable than SARS-CoV-2 Mpro system. Further, (-)-epicatechin-3-O-gallate was subjected to QSAR analysis which predicted IC50 of 0.3281 nM against SARS-CoV-2 Mpro. Overall, (-)-epicatechin-3-O-gallate showed a potential binding affinity with SARS-CoV-2 Mpro and could be proposed as a potential natural compound for COVID-19 treatment.


Assuntos
Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Simulação de Dinâmica Molecular , Extratos Vegetais/farmacologia , Inibidores de Proteases/farmacologia , SARS-CoV-2/enzimologia , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Proteases Semelhantes à Papaína de Coronavírus/química , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Ligação Proteica , Conformação Proteica , SARS-CoV-2/efeitos dos fármacos , Termodinâmica
6.
Sci Rep ; 9(1): 14493, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601896

RESUMO

Medicinal plant-based therapies can be important for treatment of cancer owing to high efficiency, low cost and minimal side effects. Here, we report the anti-cancer efficacy of Ricinus communis L. fruit extract (RCFE) using estrogen positive MCF-7 and highly aggressive, triple negative MDA-MB-231 breast cancer cells. RCFE induced cytotoxicity in these cells in dose and time-dependent manner. It also demonstrated robust anti-metastatic activity as it significantly inhibited migration, adhesion, invasion and expression of matrix metalloproteinases (MMPs) 2 and 9 in both cell lines. Further, flow cytometry analysis suggested RCFE-mediated induction of apoptosis in these cells. This was supported by attenuation of anti-apoptotic Bcl-2, induction of pro-apoptotic Bax and caspase-7 expressions as well as PARP cleavage upon RCFE treatment. RCFE (0.5 mg/Kg body weight) treatment led to significant reduction in tumor volume in 4T1 syngeneic mouse model. HPLC and ESI-MS analysis of active ethyl acetate fraction of RCFE detected four compounds, Ricinine, p-Coumaric acid, Epigallocatechin and Ricinoleic acid. Individually these compounds showed cytotoxic and migration-inhibitory activities. Overall, this study for the first time demonstrates the anti-cancer efficacy of the fruit extract of common castor plant which can be proposed as a potent candidate for the treatment of breast cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Extratos Vegetais/farmacologia , Ricinus/química , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Caspase 7/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Feminino , Frutas/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Extratos Vegetais/química , Proteínas Proto-Oncogênicas c-bcl-2/genética
7.
Pharmacol Res ; 129: 227-236, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29175114

RESUMO

Murraya koenigii, a plant belonging to the Rutaceae family is widely distributed in Eastern-Asia and its medicinal properties are well documented in Ayurveda, the traditional Indian system of medicine. Through systematic research and pharmacological evaluation of different parts of the plant extracts has been shown to possess antiviral, anti-inflammatory, antioxidant, antidiabetic, antidiarrhoeal, antileishmanial, and antitumor activity. In the plant extracts, carbazole alkaloid, mahanine has been identified as the principle bioactive component among several other chemical constituents. Scientific evidence derived not only from in vitro cellular experiments but also from in vivo studies in various cancer models is accumulating for the pronounced anticancer effects of mahanine. The primary objective of this review is to summarize research data on cytotoxic chemical constituents present in different parts of Murraya koenigii and the anticancer activity of mahanine along with the recent understanding on the mechanism of its action in diverse cancer models. The information on its bioavailability and the toxicity generated from the recent studies have also been incorporated in the review.


Assuntos
Antineoplásicos , Carbazóis , Murraya , Compostos Fitoquímicos , Animais , Antineoplásicos/análise , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carbazóis/análise , Carbazóis/farmacologia , Carbazóis/uso terapêutico , Humanos , Murraya/química , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA