Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Bioanalysis ; 15(23): 1421-1437, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37847061

RESUMO

Background: A biomarker profile was evaluated longitudinally in patients with Fabry disease switched from enzyme-replacement therapy (ERT) to migalastat. Methods: 16 Gb3 isoforms and eight lyso-Gb3 analogues were analyzed in plasma and urine by LC-MS/MS at baseline and at three different time points in naive participants and participants switching from either agalsidase α or ß to migalastat. Results: 29 adult participants were recruited internationally (seven centers). The Mainz Severity Score Index and mean biomarker levels remained stable (p ≥ 0.05) over a minimum of 12 months compared with baseline following the treatment switch. Conclusion: In this cohort of patients with Fabry disease with amenable mutations, in the short term, a switch from ERT to migalastat did not have a marked effect on the average biomarker profile.


Assuntos
Doença de Fabry , Adulto , Humanos , Doença de Fabry/tratamento farmacológico , Doença de Fabry/genética , Cromatografia Líquida , Espectrometria de Massas em Tandem , 1-Desoxinojirimicina/uso terapêutico , Biomarcadores
2.
Mol Ther ; 25(5): 1199-1208, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28341561

RESUMO

Duvoglustat HCl (AT2220, 1-deoxynojirimycin) is an investigational pharmacological chaperone for the treatment of acid α-glucosidase (GAA) deficiency, which leads to the lysosomal storage disorder Pompe disease, which is characterized by progressive accumulation of lysosomal glycogen primarily in heart and skeletal muscles. The current standard of care is enzyme replacement therapy with recombinant human GAA (alglucosidase alfa [AA], Genzyme). Based on preclinical data, oral co-administration of duvoglustat HCl with AA increases exposure of active levels in plasma and skeletal muscles, leading to greater substrate reduction in muscle. This phase 2a study consisted of an open-label, fixed-treatment sequence that evaluated the effect of single oral doses of 50 mg, 100 mg, 250 mg, or 600 mg duvoglustat HCl on the pharmacokinetics and tissue levels of intravenously infused AA (20 mg/kg) in Pompe patients. AA alone resulted in increases in total GAA activity and protein in plasma compared to baseline. Following co-administration with duvoglustat HCl, total GAA activity and protein in plasma were further increased 1.2- to 2.8-fold compared to AA alone in all 25 Pompe patients; importantly, muscle GAA activity was increased for all co-administration treatments from day 3 biopsy specimens. No duvoglustat-related adverse events or drug-related tolerability issues were identified.


Assuntos
1-Desoxinojirimicina/uso terapêutico , Doença de Depósito de Glicogênio Tipo II/tratamento farmacológico , Lisossomos/enzimologia , Músculo Esquelético/efeitos dos fármacos , alfa-Glucosidases/farmacocinética , Administração Oral , Adulto , Esquema de Medicação , Sinergismo Farmacológico , Quimioterapia Combinada , Terapia de Reposição de Enzimas/métodos , Feminino , Doença de Depósito de Glicogênio Tipo II/enzimologia , Doença de Depósito de Glicogênio Tipo II/patologia , Humanos , Infusões Intravenosas , Lisossomos/patologia , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Segurança do Paciente , Resultado do Tratamento , alfa-Glucosidases/sangue
3.
J Med Genet ; 54(4): 288-296, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27834756

RESUMO

BACKGROUND: Fabry disease is an X-linked lysosomal storage disorder caused by GLA mutations, resulting in α-galactosidase (α-Gal) deficiency and accumulation of lysosomal substrates. Migalastat, an oral pharmacological chaperone being developed as an alternative to intravenous enzyme replacement therapy (ERT), stabilises specific mutant (amenable) forms of α-Gal to facilitate normal lysosomal trafficking. METHODS: The main objective of the 18-month, randomised, active-controlled ATTRACT study was to assess the effects of migalastat on renal function in patients with Fabry disease previously treated with ERT. Effects on heart, disease substrate, patient-reported outcomes (PROs) and safety were also assessed. RESULTS: Fifty-seven adults (56% female) receiving ERT (88% had multiorgan disease) were randomised (1.5:1), based on a preliminary cell-based assay of responsiveness to migalastat, to receive 18 months open-label migalastat or remain on ERT. Four patients had non-amenable mutant forms of α-Gal based on the validated cell-based assay conducted after treatment initiation and were excluded from primary efficacy analyses only. Migalastat and ERT had similar effects on renal function. Left ventricular mass index decreased significantly with migalastat treatment (-6.6 g/m2 (-11.0 to -2.2)); there was no significant change with ERT. Predefined renal, cardiac or cerebrovascular events occurred in 29% and 44% of patients in the migalastat and ERT groups, respectively. Plasma globotriaosylsphingosine remained low and stable following the switch from ERT to migalastat. PROs were comparable between groups. Migalastat was generally safe and well tolerated. CONCLUSIONS: Migalastat offers promise as a first-in-class oral monotherapy alternative treatment to intravenous ERT for patients with Fabry disease and amenable mutations. TRIAL REGISTRATION NUMBER: NCT00925301; Pre-results.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Doença de Fabry/tratamento farmacológico , Chaperonas Moleculares/administração & dosagem , alfa-Galactosidase/genética , 1-Desoxinojirimicina/administração & dosagem , 1-Desoxinojirimicina/efeitos adversos , Administração Oral , Adolescente , Adulto , Idoso , Terapia de Reposição de Enzimas/efeitos adversos , Doença de Fabry/metabolismo , Doença de Fabry/fisiopatologia , Feminino , Humanos , Lisossomos/genética , Lisossomos/patologia , Masculino , Pessoa de Meia-Idade , Chaperonas Moleculares/efeitos adversos , Resultado do Tratamento
4.
N Engl J Med ; 375(6): 545-55, 2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27509102

RESUMO

BACKGROUND: Fabry's disease, an X-linked disorder of lysosomal α-galactosidase deficiency, leads to substrate accumulation in multiple organs. Migalastat, an oral pharmacologic chaperone, stabilizes specific mutant forms of α-galactosidase, increasing enzyme trafficking to lysosomes. METHODS: The initial assay of mutant α-galactosidase forms that we used to categorize 67 patients with Fabry's disease for randomization to 6 months of double-blind migalastat or placebo (stage 1), followed by open-label migalastat from 6 to 12 months (stage 2) plus an additional year, had certain limitations. Before unblinding, a new, validated assay showed that 50 of the 67 participants had mutant α-galactosidase forms suitable for targeting by migalastat. The primary end point was the percentage of patients who had a response (≥50% reduction in the number of globotriaosylceramide inclusions per kidney interstitial capillary) at 6 months. We assessed safety along with disease substrates and renal, cardiovascular, and patient-reported outcomes. RESULTS: The primary end-point analysis, involving patients with mutant α-galactosidase forms that were suitable or not suitable for migalastat therapy, did not show a significant treatment effect: 13 of 32 patients (41%) who received migalastat and 9 of 32 patients (28%) who received placebo had a response at 6 months (P=0.30). Among patients with suitable mutant α-galactosidase who received migalastat for up to 24 months, the annualized changes from baseline in the estimated glomerular filtration rate (GFR) and measured GFR were -0.30±0.66 and -1.51±1.33 ml per minute per 1.73 m(2) of body-surface area, respectively. The left-ventricular-mass index decreased significantly from baseline (-7.7 g per square meter; 95% confidence interval [CI], -15.4 to -0.01), particularly when left ventricular hypertrophy was present (-18.6 g per square meter; 95% CI, -38.2 to 1.0). The severity of diarrhea, reflux, and indigestion decreased. CONCLUSIONS: Among all randomly assigned patients (with mutant α-galactosidase forms that were suitable or not suitable for migalastat therapy), the percentage of patients who had a response at 6 months did not differ significantly between the migalastat group and the placebo group. (Funded by Amicus Therapeutics; ClinicalTrials.gov numbers, NCT00925301 [study AT1001-011] and NCT01458119 [study AT1001-041].).


Assuntos
1-Desoxinojirimicina/análogos & derivados , Doença de Fabry/tratamento farmacológico , Rim/química , Triexosilceramidas/análise , alfa-Galactosidase/antagonistas & inibidores , 1-Desoxinojirimicina/efeitos adversos , 1-Desoxinojirimicina/uso terapêutico , Adolescente , Adulto , Idoso , Diarreia/tratamento farmacológico , Diarreia/etiologia , Método Duplo-Cego , Doença de Fabry/complicações , Feminino , Taxa de Filtração Glomerular , Ventrículos do Coração/diagnóstico por imagem , Humanos , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Hipertrofia Ventricular Esquerda/tratamento farmacológico , Rim/fisiopatologia , Masculino , Pessoa de Meia-Idade , Mutação , Triexosilceramidas/urina , Ultrassonografia , Adulto Jovem , alfa-Galactosidase/genética
5.
PLoS One ; 10(8): e0134341, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26252393

RESUMO

UNLABELLED: Migalastat HCl (AT1001, 1-Deoxygalactonojirimycin) is an investigational pharmacological chaperone for the treatment of α-galactosidase A (α-Gal A) deficiency, which leads to Fabry disease, an X-linked, lysosomal storage disorder. The currently approved, biologics-based therapy for Fabry disease is enzyme replacement therapy (ERT) with either agalsidase alfa (Replagal) or agalsidase beta (Fabrazyme). Based on preclinical data, migalastat HCl in combination with agalsidase is expected to result in the pharmacokinetic (PK) enhancement of agalsidase in plasma by increasing the systemic exposure of active agalsidase, thereby leading to increased cellular levels in disease-relevant tissues. This Phase 2a study design consisted of an open-label, fixed-treatment sequence that evaluated the effects of single oral doses of 150 mg or 450 mg migalastat HCl on the PK and tissue levels of intravenously infused agalsidase (0.2, 0.5, or 1.0 mg/kg) in male Fabry patients. As expected, intravenous administration of agalsidase alone resulted in increased α-Gal A activity in plasma, skin, and peripheral blood mononuclear cells (PBMCs) compared to baseline. Following co-administration of migalastat HCl and agalsidase, α-Gal A activity in plasma was further significantly increased 1.2- to 5.1-fold compared to agalsidase administration alone, in 22 of 23 patients (95.6%). Importantly, similar increases in skin and PBMC α-Gal A activity were seen following co-administration of migalastat HCl and agalsidase. The effects were not related to the administered migalastat HCl dose, as the 150 mg dose of migalastat HCl increased α-Gal A activity to the same extent as the 450 mg dose. Conversely, agalsidase had no effect on the plasma PK of migalastat. No migalastat HCl-related adverse events or drug-related tolerability issues were identified. TRIAL REGISTRATION: ClinicalTrials.gov NCT01196871.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Doença de Fabry/tratamento farmacológico , Doença de Fabry/enzimologia , Isoenzimas/uso terapêutico , alfa-Galactosidase/metabolismo , 1-Desoxinojirimicina/administração & dosagem , 1-Desoxinojirimicina/sangue , 1-Desoxinojirimicina/farmacocinética , 1-Desoxinojirimicina/uso terapêutico , Administração Oral , Adulto , Área Sob a Curva , Demografia , Doença de Fabry/sangue , Humanos , Bombas de Infusão , Isoenzimas/administração & dosagem , Masculino , Pessoa de Meia-Idade , Proteínas Recombinantes , Pele/enzimologia , alfa-Galactosidase/administração & dosagem , alfa-Galactosidase/sangue , alfa-Galactosidase/uso terapêutico
6.
Comb Chem High Throughput Screen ; 11(10): 817-24, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19075603

RESUMO

Glucocerebrosidase (GC) catalyzes the hydrolysis of beta-glucocerebroside to glucose and ceramide in lysosomes. Mutations in the glucocerebrosidase gene (GBA) result in Gaucher disease, an autosomal recessive lysosomal storage disorder. Many of the mutations encountered in patients with Gaucher disease are missense alterations that may cause misfolding, decreased stability and/or mistrafficking of this lysosomal protein. Some inhibitors of GC have been shown to act as chemical chaperones, stabilizing the conformation of mutant proteins and thus restoring their function. High throughput screening (HTS) of small molecule libraries for such compounds with potential for chaperone therapy requires an accurate, reproducible and sensitive assay method. We have adapted and optimized two fluorogenic GC enzyme assays and miniaturized them into the 1536-well plate format for HTS. The two substrates, 4-methylumbelliferyl beta-D-glucopyranoside and resorufin beta-D-glucopyranoside, have K(m) values of 768 microM and 33 microM, respectively, and different emission spectra. Paired screening with the two assays helps to eliminate false inference of activity due to autofluorescence or fluorescence quenching by the screened compounds. Test screens with the LOPAC library indicated that both assays were robust for HTS, and gave comparable results for GC inhibitor activities. These two assays can be used to identify both GC activators and inhibitors with potential therapeutic value.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Glucosilceramidase/análise , Glucosilceramidase/metabolismo , Dimetil Sulfóxido , Inibidores Enzimáticos/farmacologia , Glucosilceramidase/antagonistas & inibidores , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Cinética , Miniaturização , Espectrometria de Fluorescência , Especificidade por Substrato , Ácido Taurocólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA