Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur Arch Psychiatry Clin Neurosci ; 263(3): 241-7, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22584805

RESUMO

In the search for the biomarkers of schizophrenia, event-related potential (ERP) deficits obtained by applying the classic oddball paradigm are among the most consistent findings. However, the single-subject classification rate based on these parameters remains to be determined. Here, we present a data-driven approach by applying machine learning classifiers to relevant oddball ERPs. Twenty-four schizophrenic patients and 24 matched healthy controls finished auditory and visual oddball tasks while high-density electrophysiological recordings were applied. The N1 component in response to standards and target as well as the P3 component following targets were submitted to different machine learning algorithms and the resulting ERP features were submitted to further correlation analyses. We obtained a classification accuracy of 72.4 % using only two ERP components. Latencies of parietal N1 components to visual standard stimuli at electrode positions Pz and P1 were sufficient for classification. Further analysis revealed a high correlation of these features in controls and an intermediate correlation in schizophrenia patients. These data exemplarily show how automated inference may be applied to classify a pathological state in single subjects without prior knowledge of their diagnoses and illustrate the potential of machine learning algorithms for the identification of potential biomarkers. Moreover, this approach assesses the discriminative accuracy of one of the most consistent findings in schizophrenia research by means of single-subject classification.


Assuntos
Potenciais Evocados Auditivos/fisiologia , Esquizofrenia/classificação , Esquizofrenia/diagnóstico , Detecção de Sinal Psicológico/fisiologia , Estimulação Acústica , Adulto , Mapeamento Encefálico , Eletroencefalografia , Feminino , Análise de Fourier , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Estimulação Luminosa , Tempo de Reação , Adulto Jovem
2.
Nat Med ; 15(5): 509-18, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19412172

RESUMO

Organized neuronal firing is crucial for cortical processing and is disrupted in schizophrenia. Using rapid amplification of 5' complementary DNA ends in human brain, we identified a primate-specific isoform (3.1) of the ether-a-go-go-related K(+) channel KCNH2 that modulates neuronal firing. KCNH2-3.1 messenger RNA levels are comparable to full-length KCNH2 (1A) levels in brain but three orders of magnitude lower in heart. In hippocampus from individuals with schizophrenia, KCNH2-3.1 expression is 2.5-fold greater than KCNH2-1A expression. A meta-analysis of five clinical data sets (367 families, 1,158 unrelated cases and 1,704 controls) shows association of single nucleotide polymorphisms in KCNH2 with schizophrenia. Risk-associated alleles predict lower intelligence quotient scores and speed of cognitive processing, altered memory-linked functional magnetic resonance imaging signals and increased KCNH2-3.1 mRNA levels in postmortem hippocampus. KCNH2-3.1 lacks a domain that is crucial for slow channel deactivation. Overexpression of KCNH2-3.1 in primary cortical neurons induces a rapidly deactivating K(+) current and a high-frequency, nonadapting firing pattern. These results identify a previously undescribed KCNH2 channel isoform involved in cortical physiology, cognition and psychosis, providing a potential new therapeutic drug target.


Assuntos
Córtex Cerebral/fisiologia , Cognição/fisiologia , Canais de Potássio Éter-A-Go-Go/genética , Regulação da Expressão Gênica , Neurônios/fisiologia , Esquizofrenia/genética , Animais , Canal de Potássio ERG1 , Humanos , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Primatas , Fatores de Risco , Esquizofrenia/epidemiologia , População Branca/genética
3.
Schizophr Res ; 111(1-3): 167-73, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19356906

RESUMO

Cerebral dopamine homeostasis has been implicated in a wide range of cognitive processes and is of great pathophysiological importance in schizophrenia. A novel approach to study cognitive effects of dopamine is to deplete its cerebral levels with branched chain amino acids (BCAAs) that acutely lower dopamine precursor amino acid availability. Here, we studied the effects of acute dopamine depletion on early and late attentive cortical processing. Auditory event-related potential (ERP) components N2 and P3 were investigated using high-density electroencephalography in 22 healthy male subjects after receiving BCAAs or placebo in a randomized, double-blind, placebo-controlled crossover design. Total free serum prolactin was also determined as a surrogate marker of cerebral dopamine depletion. Acute dopamine depletion increased free plasma prolactin and significantly reduced prefrontal ERP components N2 and P3. Subcomponent analysis of N2 revealed a significant attenuation of early attentive N2b over prefrontal scalp sites. As a proof of concept, these results strongly suggest that BCAAs are acting on basic information processing. Dopaminergic neurotransmission seems to be involved in auditory top-down processing as indexed by prefrontal N2 and P3 reductions during dopamine depletion. In healthy subjects, intact early cortical top-down processing can be acutely dysregulated by ingestion of BCAAs. We discuss the potential impact of these findings on schizophrenia research.


Assuntos
Aminoácidos de Cadeia Ramificada/administração & dosagem , Variação Contingente Negativa/fisiologia , Dopamina/deficiência , Potenciais Evocados Auditivos/fisiologia , Estimulação Acústica/métodos , Administração Oral , Adulto , Mapeamento Encefálico , Variação Contingente Negativa/efeitos dos fármacos , Estudos Cross-Over , Método Duplo-Cego , Eletroencefalografia/métodos , Potenciais Evocados Auditivos/efeitos dos fármacos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prolactina/metabolismo , Psicoacústica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA