Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 22(24): 19326-41, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26122566

RESUMO

To understand the links between the long-term impact of uranium and other metals on microbial community composition, ground- and surface water-influenced soils varying greatly in uranium and metal concentrations were investigated at the former uranium-mining district in Ronneburg, Germany. A soil-based 16S PhyloChip approach revealed 2358 bacterial and 35 archaeal operational taxonomic units (OTU) within diverse phylogenetic groups with higher OTU numbers than at other uranium-contaminated sites, e.g., at Oak Ridge. Iron- and sulfate-reducing bacteria (FeRB and SRB), which have the potential to attenuate uranium and other metals by the enzymatic and/or abiotic reduction of metal ions, were found at all sites. Although soil concentrations of solid-phase uranium were high, ranging from 5 to 1569 µg·g (dry weight) soil(-1), redundancy analysis (RDA) and forward selection indicated that neither total nor bio-available uranium concentrations contributed significantly to the observed OTU distribution. Instead, microbial community composition appeared to be influenced more by redox potential. Bacterial communities were also influenced by bio-available manganese and total cobalt and cadmium concentrations. Bio-available cadmium impacted FeRB distribution while bio-available manganese and copper as well as solid-phase zinc concentrations in the soil affected SRB composition. Archaeal communities were influenced by the bio-available lead as well as total zinc and cobalt concentrations. These results suggest that (i) microbial richness was not impacted by heavy metals and radionuclides and that (ii) redox potential and secondary metal contaminants had the strongest effect on microbial community composition, as opposed to uranium, the primary source of contamination.


Assuntos
Microbiota/efeitos dos fármacos , Microbiologia do Solo , Poluentes do Solo/farmacologia , Urânio/farmacologia , Cádmio/análise , Cádmio/farmacologia , Cobalto/análise , Cobalto/farmacologia , Cobre/análise , Cobre/farmacologia , Alemanha , Mineração , Filogenia , Solo/química , Poluentes do Solo/análise , Bactérias Redutoras de Enxofre/efeitos dos fármacos , Urânio/análise , Zinco/análise , Zinco/farmacologia
2.
FEMS Microbiol Ecol ; 79(3): 728-40, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22098093

RESUMO

Soil Ca depletion because of acidic deposition-related soil chemistry changes has led to the decline of forest productivity and carbon sequestration in the northeastern USA. In 1999, acidic watershed (WS) 1 at the Hubbard Brook Experimental Forest (HBEF), NH, USA was amended with Ca silicate to restore soil Ca pools. In 2006, soil samples were collected from the Ca-amended (WS1) and reference watershed (WS3) for comparison of bacterial community composition between the two watersheds. The sites were about 125 m apart and were known to have similar stream chemistry and tree populations before Ca amendment. Ca-amended soil had higher Ca and P, and lower Al and acidity as compared with the reference soils. Analysis of bacterial populations by PhyloChip revealed that the bacterial community structure in the Ca-amended and the reference soils was significantly different and that the differences were more pronounced in the mineral soils. Overall, the relative abundance of 300 taxa was significantly affected. Numbers of detectable taxa in families such as Acidobacteriaceae, Comamonadaceae, and Pseudomonadaceae were lower in the Ca-amended soils, while Flavobacteriaceae and Geobacteraceae were higher. The other functionally important groups, e.g. ammonia-oxidizing Nitrosomonadaceae, had lower numbers of taxa in the Ca-amended organic soil but higher in the mineral soil.


Assuntos
Bactérias/crescimento & desenvolvimento , Cálcio/análise , Recuperação e Remediação Ambiental/métodos , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Sequência de Bases , Biodiversidade , Eletroforese em Gel de Gradiente Desnaturante , Ecossistema , Dados de Sequência Molecular , New Hampshire , Rios/química , Silicatos/análise , Solo/química , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA