Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339064

RESUMO

Proteinaceous aggregates accumulate in neurodegenerative diseases such as Alzheimer's Disease (AD), inducing cellular defense mechanisms and altering the redox status. S100 pro-inflammatory cytokines, particularly S100B, are activated during AD, but recent findings reveal an unconventional molecular chaperone role for S100B in hindering Aß aggregation and toxicity. This suggests a potential protective role for S100B at the onset of Aß proteotoxicity, occurring in a complex biochemical environment prone to oxidative damage. Herein, we report an investigation in which extracellular oxidative conditions are mimicked to test if the susceptibility of S100B to oxidation influences its protective activities. Resorting to mild oxidation of S100B, we observed methionine oxidation as inferred from mass spectrometry, but no cysteine-mediated crosslinking. Structural analysis showed that the folding, structure, and stability of oxidized S100B were not affected, and nor was its quaternary structure. However, studies on Aß aggregation kinetics indicated that oxidized S100B was more effective in preventing aggregation, potentially linked to the oxidation of Met residues within the S100:Aß binding cleft that favors interactions. Using a cell culture model to analyze the S100B functions in a highly oxidative milieu, as in AD, we observed that Aß toxicity is rescued by the co-administration of oxidized S100B to a greater extent than by S100B. Additionally, results suggest a disrupted positive feedback loop involving S100B which is caused by its oxidation, leading to the downstream regulation of IL-17 and IFN-α2 expression as mediated by S100B.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Estresse Oxidativo , Agregados Proteicos , Oxirredução , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo
2.
Int J Mol Sci ; 21(19)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992790

RESUMO

Riboflavin is the biological precursor of two important flavin cofactors-flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN)-that are critical prosthetic groups in several redox enzymes. While dietary supplementation with riboflavin is a recognized support therapy in several inborn errors of metabolism, it has yet unproven benefits in several other pathologies affecting flavoproteins. This is the case for glutaric aciduria type I (GA-I), a rare neurometabolic disorder associated with mutations in the GCDH gene, which encodes for glutaryl-coenzyme A (CoA) dehydrogenase (GCDH). Although there are a few reported clinical cases that have responded to riboflavin intake, there is still not enough molecular evidence supporting therapeutic recommendation. Hence, it is necessary to elucidate the molecular basis in favor of riboflavin supplementation in GA-I patients. Here, using a combination of biochemical and biophysical methodologies, we investigate the clinical variant GCDH-p.Val400Met as a model for a phenotype associated with severe deflavinylation. Through a systematic analysis, we establish that recombinant human GCDH-p.Val400Met is expressed in a nonfunctional apo form, which is mainly monomeric rather than tetrameric. However, we show that exogenous FAD is a driver for structural reorganization of the mutant enzyme with concomitant functional recovery, improved thermolability, and resistance to trypsin digestion. Overall, these results establish proof of principle for the beneficial effects of riboflavin supplementation in GA-I patients.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Encefalopatias Metabólicas , Glutaril-CoA Desidrogenase/deficiência , Glutaril-CoA Desidrogenase/genética , Riboflavina , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Encefalopatias Metabólicas/metabolismo , Glutaril-CoA Desidrogenase/química , Glutaril-CoA Desidrogenase/efeitos dos fármacos , Glutaril-CoA Desidrogenase/metabolismo , Humanos , Mutação , Dobramento de Proteína/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Proteínas Recombinantes , Riboflavina/farmacologia
3.
Curr Mol Med ; 19(7): 487-493, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31418342

RESUMO

BACKGROUND: Multiple Acyl-CoA Dehydrogenase Deficiency (MADD) is a congenital rare metabolic disease with broad clinical phenotypes and variable evolution. This inborn error of metabolism is caused by mutations in the ETFA, ETFB or ETFDH genes, which encode for the mitochondrial ETF and ETF:QO proteins. A considerable group of patients has been described to respond positively to riboflavin oral supplementation, which constitutes the prototypic treatment for the pathology. OBJECTIVES: To report mutations in ETFA, ETFB and ETFDH genes identified in Portuguese patients, correlating, whenever possible, biochemical and clinical outcomes with the effects of mutations on the structure and stability of the affected proteins, to better understand MADD pathogenesis at the molecular level. METHODS: MADD patients were identified based on the characteristic urinary profile of organic acids and/or acylcarnitine profiles in blood spots during newborn screening. Genotypic, clinical and biochemical data were collected for all patients. In silico structural analysis was employed using bioinformatic tools carried out in an ETF:QO molecular model for the identified missense mutations. RESULTS: A survey describing clinical and biochemical features of eight Portuguese MADD patients was made. Genotype analysis identified five ETFDH mutations, including one extension (p.X618QextX*14), two splice mutations (c.34+5G>C and c.405+3A>T) and two missense mutations (ETF:QO-p.Arg155Gly and ETF:QO-p.Pro534Leu), and one ETFB mutation (ETFß- p.Arg191Cys). Homozygous patients containing the ETFDH mutations p.X618QextX*14, c.34+5G>C and ETF:QO-p.Arg155Gly, all presented severe (lethal) MADD phenotypes. However, when any of these mutations are in heterozygosity with the known ETF:QO-p.Pro534Leu mild variant, the severe clinical effects are partly and temporarily attenuated. Indeed, the latter destabilizes an ETF-interacting loop, with no major functional consequences. However, the position 155 in ETF:QO is localized at the ubiquinone binding and membrane interacting domain, and is thus expected to perturb protein structure and membrane insertion, with severe functional effects. Structural analysis of molecular models is therefore demonstrated to be a valuable tool to rationalize the effects of mutations in the context of the clinical phenotype severity. CONCLUSION: Advanced molecular diagnosis, structural analysis and clinical correlations reveal that MADD patients harboring a severe prognosis mutation in one allele can actually revert to a milder phenotype by complementation with a milder mutation in the other allele. However, such patients are nevertheless in a precarious metabolic balance which can revert to severe fatal outcomes during catabolic stress or secondary pathology, thus requiring strict clinical follow-up.


Assuntos
Flavoproteínas Transferidoras de Elétrons/genética , Proteínas Ferro-Enxofre/genética , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Acil-CoA Desidrogenase/deficiência , Acil-CoA Desidrogenase/genética , Alelos , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Recém-Nascido , Masculino , Deficiência Múltipla de Acil Coenzima A Desidrogenase/patologia , Mutação de Sentido Incorreto/genética , Triagem Neonatal , Portugal/epidemiologia , Gravidez , Prognóstico , Riboflavina/genética , Riboflavina/metabolismo
4.
Metallomics ; 7(2): 333-46, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25554447

RESUMO

Superoxide dismutase 1 (SOD1) is a Cu/Zn metalloenzyme that aggregates in amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder. Correct metal insertion during SOD1 biosynthesis is critical to prevent misfolding; however Zn(2+) can bind to the copper-site leading to an aberrantly metallated protein. These effects of Zn(2+) misligation on SOD1 aggregation remain to be explored, even though Zn(2+) levels are upregulated in ALS motor neurons. Here we use complementary biophysical methods to investigate Zn(2+) binding and its effects on the aggregation of three immature metal-free SOD1 conformers that represent biogenesis intermediates: dimeric, monomeric and reduced monomeric SOD1. Using isothermal titration calorimetry we determined that Zn(2+) binds to all conformers both at the zinc- as well as to the copper-site; however Zn(2+) binding mechanisms to the zinc-site have distinct characteristics across immature conformers. We show that this 'zinc overload' of immature SOD1 promotes intermolecular interactions, as evidenced by dynamic light scattering and ThT fluorescence kinetic studies. Analysis of aged zinc-induced aggregates by energy-dispersive X-ray and electron energy-loss spectroscopy shows that aggregates integrate some Zn(2+). In addition, electron diffraction analysis identifies nano-scaled crystalline materials and amyloid fibril-like reflections. Transmission electron microscopy reveals that Zn(2+) diverts the SOD1 aggregation pathway from fibrils to amorphous aggregate, and electrophoretic analysis evidences an increase in insoluble materials. Overall, we provide evidence that aberrant zinc coordination to immature conformers broadens the population of SOD1 misfolded species at early aggregation stages and provide evidence for a high structural polymorphism and heterogeneity of SOD1 aggregates.


Assuntos
Agregados Proteicos , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Zinco/metabolismo , Calorimetria , Eletroforese em Gel de Poliacrilamida , Modelos Biológicos , Oxirredução , Conformação Proteica , Multimerização Proteica , Solubilidade , Superóxido Dismutase/ultraestrutura , Superóxido Dismutase-1 , Difração de Raios X
5.
Curr Top Med Chem ; 12(22): 2546-59, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23339307

RESUMO

In the past few decades, improved early diagnosis methods, technological developments and an increasing crosstalk between clinicians and researchers has led to the identification of an increasing number of inborn metabolic diseases. In these disorders, missense mutations are the most frequent type of genetic defects, frequently resulting in defective protein folding. A better understanding at the molecular level of protein misfolding and its role in disease has prompted the emergence of therapies based in the use of small molecules that have the ability to correct protein folding defects. Well-known cases are reported for phenylketonuria and Gaucher's disease. Most of these compounds have a specific mechanism of action interacting directly with a particular protein, the so called pharmacological chaperones. Among such small molecules are protein ligands, either natural substrates or synthetic derivatives, cofactors, competitive inhibitors, and agonist/antagonists. In this review we will start by briefly overviewing the mechanisms through which such ligands exert a stabilizing action, and then move on to an extended discussion on therapeutic approaches and use of vitamins and substrates to correct protein misfolding in metabolic disorders. Examples of vitamins that have been successfully prescribed to rescue some cases of inborn errors of metabolism will be presented. In particular, the role of riboflavin supplementation in the treatment of fatty acid ß-oxidation disorders will be thoroughly analyzed, focusing on recent reports that shed light on the molecular basis of vitamin responsiveness. Moreover, we will highlight the latest studies that point to a synergistic effect of cofactors and metabolites in the rescue of defective fatty acid ß-oxidation enzymes. The synergism of multiple small molecules may underlie a promising general pharmacological strategy for the treatment of metabolic diseases in general.


Assuntos
Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/metabolismo , Dobramento de Proteína , Ácidos Graxos/metabolismo , Humanos , Ligantes , Terapia de Alvo Molecular/métodos , Oxirredução , Fenilcetonúrias/metabolismo , Riboflavina/farmacologia , Vitaminas/farmacologia
6.
Curr Med Chem ; 17(32): 3842-54, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20858216

RESUMO

Riboflavin, commonly known as vitamin B2, is the precursor of flavin cofactors. It is present in our typical diet, and inside the cells it is metabolized to FMN and FAD. As a result of their rather unique and flexible chemical properties these flavins are among the most important redox cofactors present in a large series of different enzymes. A problem in riboflavin metabolism or a low intake of this vitamin will have consequences on the level of FAD and FMN in the cell, resulting in disorders associated with riboflavin deficiency. In a few number of cases, riboflavin deficiency is associated with impaired oxidative folding, cell damage and impaired heme biosynthesis. More relevant are several studies referring reduced activity of enzymes such as dehydrogenases involved in oxidative reactions, respiratory complexes and enzymes from the fatty acid ß-oxidation pathway. The role of this vitamin in mitochondrial metabolism, and in particular in fatty acid oxidation, will be discussed in this review. The basic aspects concerning riboflavin and flavin metabolism and deficiency will be addressed, as well as an overview of the role of the different flavoenzymes and flavin chemistry in fatty acid ß-oxidation, merging clinical, cellular and biochemical perspectives. A number of recent studies shedding new light on the cellular processes and biological effects of riboflavin supplementation in metabolic disease will also be overviewed. Overall, a deeper understanding of these emerging roles of riboflavin intake is essential to design better therapies.


Assuntos
Mitocôndrias/metabolismo , Riboflavina/fisiologia , Carnitina Aciltransferases/metabolismo , Humanos , Deficiência Múltipla de Acil Coenzima A Desidrogenase/metabolismo , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Riboflavina/metabolismo
7.
J Biol Chem ; 284(7): 4222-9, 2009 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-19088074

RESUMO

Mutations in the genes encoding the alpha-subunit and beta-subunit of the mitochondrial electron transfer flavoprotein (ETF) and the electron transfer flavoprotein:ubiquinone oxidoreductase (ETF:QO) cause multiple acyl-CoA dehydrogenation deficiency (MADD), a disorder of fatty acid and amino acid metabolism. Point mutations in ETF, which may compromise folding, and/or activity, are associated with both mild and severe forms of MADD. Here we report the investigation on the conformational and stability properties of the disease-causing variant ETFbeta-D128N, and our findings on the effect of flavinylation in modulating protein conformational stability and activity. A combination of biochemical and biophysical methods including circular dichroism, visible absorption, flavin, and tryptophan fluorescence emission allowed the analysis of structural changes and of the FAD moiety. The ETFbeta-D128N variant retains the overall fold of the wild type, but under stress conditions its flavin becomes less tightly bound. Flavinylation is shown to improve the conformational stability and biological activity of a destabilized D128N variant protein. Moreover, the presence of flavin prevented proteolytic digestion by avoiding protein destabilization. A patient homozygous for the ETFbeta-D128N mutation developed severe disease symptoms in association with a viral infection and fever. In agreement, our results suggest that heat inactivation of the mutant may be more relevant at temperatures above 37 degrees C. To mimic a situation of fever in vitro, the flavinylation status was tested at 39 degrees C. FAD exerts the effect of a pharmacological chaperone, improving ETF conformation, and yielding a more stable and active enzyme. Our results provide a structural and functional framework that could help to elucidate the role that an increased cellular FAD content obtained from riboflavin supplementation may play in the molecular pathogenesis of not only MADD, but genetic disorders of flavoproteins in general.


Assuntos
Flavoproteínas Transferidoras de Elétrons/química , Flavina-Adenina Dinucleotídeo/química , Deficiência Múltipla de Acil Coenzima A Desidrogenase , Dobramento de Proteína , Riboflavina/química , Substituição de Aminoácidos , Aminoácidos/genética , Aminoácidos/metabolismo , Dicroísmo Circular , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Flavoproteínas Transferidoras de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/metabolismo , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Flavina-Adenina Dinucleotídeo/genética , Flavina-Adenina Dinucleotídeo/metabolismo , Homozigoto , Temperatura Alta , Humanos , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Mutação Puntual , Estabilidade Proteica , Estrutura Terciária de Proteína/genética , Riboflavina/metabolismo , Riboflavina/farmacologia , Relação Estrutura-Atividade
8.
J Biol Inorg Chem ; 9(8): 987-96, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15578277

RESUMO

The ferredoxin from the thermoacidophile Acidianus ambivalens is a representative of the archaeal family of di-cluster [3Fe-4S][4Fe-4S] ferredoxins. Previous studies have shown that these ferredoxins are intrinsically very stable and led to the suggestion that upon protein unfolding the iron-sulfur clusters degraded via linear three-iron sulfur center species, with 610 and 520 nm absorption bands, resembling those observed in purple aconitase. In this work, a kinetic and spectroscopic investigation on the alkaline chemical denaturation of the protein was performed in an attempt to elucidate the degradation pathway of the iron-sulfur centers in respect to protein unfolding events. For this purpose we investigated cluster dissociation, iron release and protein unfolding by complementary biophysical techniques. We found that shortly after initial protein unfolding, iron release proceeds monophasically at a rate comparable to that of cluster degradation, and that no typical EPR features of linear three-iron sulfur centers are observed. Further, it was observed that EDTA prevents formation of the transient bands and that sulfide significantly enhances its intensity and lifetime, even after protein unfolding. Altogether, our data suggest that iron sulfides, which are formed from the release of iron and sulfide resulting from cluster degradation during protein unfolding in alkaline conditions, are in fact responsible for the observed intermediate spectral species, thus disproving the hypothesis suggesting the presence of a linear three-iron center intermediate. Kinetic studies monitored by visible, fluorescence and UV second-derivative spectroscopies have elicited that upon initial perturbation of the tertiary structure the iron-sulfur centers start decomposing and that the presence of EDTA accelerates the process. Also, the presence of EDTA lowers the observed melting temperature in thermal ramp experiments and the midpoint denaturant concentration in equilibrium chemical unfolding experiments, further suggesting that the clusters also play a structural role in the maintenance of the conformation of the folded state.


Assuntos
Ferredoxinas/química , Proteínas Ferro-Enxofre/química , Ferro/química , Dobramento de Proteína , Enxofre/química , Análise por Conglomerados , Ácido Edético/química , Guanidina/química , Concentração de Íons de Hidrogênio , Cinética , Desnaturação Proteica , Espectrofotometria Ultravioleta , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA