Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Int J Mol Sci ; 23(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36233094

RESUMO

Hybrid nanoarchitectures such as magnetic polymeric micelles (MPMs) are among the most promising nanotechnology-enabled materials for biomedical applications combining the benefits of polymeric micelles and magnetic nanoparticles within a single bioinstructive system. MPMs are formed by the self-assembly of polymer amphiphiles above the critical micelle concentration, generating a colloidal structure with a hydrophobic core and a hydrophilic shell incorporating magnetic particles (MNPs) in one of the segments. MPMs have been investigated most prominently as contrast agents for magnetic resonance imaging (MRI), as heat generators in hyperthermia treatments, and as magnetic-susceptible nanocarriers for the delivery and release of therapeutic agents. The versatility of MPMs constitutes a powerful route to ultrasensitive, precise, and multifunctional diagnostic and therapeutic vehicles for the treatment of a wide range of pathologies. Although MPMs have been significantly explored for MRI and cancer therapy, MPMs are multipurpose functional units, widening their applicability into less expected fields of research such as bioengineering and regenerative medicine. Herein, we aim to review published reports of the last five years about MPMs concerning their structure and fabrication methods as well as their current and foreseen expectations for advanced biomedical applications.


Assuntos
Hipertermia Induzida , Micelas , Meios de Contraste , Sistemas de Liberação de Medicamentos/métodos , Polímeros/química , Medicina de Precisão
2.
Carbohydr Polym ; 292: 119638, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35725198

RESUMO

Bone is a vascularized organic-inorganic composite tissue that shows a heavily-mineralized extracellular matrix (ECM) on the nanoscale. Herein, the nucleation of calcium phosphates during the biomineralization process was mimicked using negatively-charged cellulose nanocrystals (CNCs). These mineralized-CNCs were combined with platelet lysate to produce nanocomposite scaffolds through cryogelation to mimic bone ECM protein-mineral composite nature and take advantage of the bioactivity steaming from platelet-derived biomolecules. The nanocomposite scaffolds showed high microporosity (94-95%), high elasticity (recover from 75% strain cycles), injectability, and modulated platelet-derived growth factors sequestration and release. Furthermore, they increased alkaline phosphatase activity (up to 10-fold) and up-regulated the expression of bone-related markers (up to 2-fold), without osteogenic supplementation, demonstrating their osteoinductive properties. Also, the scaffolds promoted the chemotaxis of endothelial cells and enhanced the expression of endothelial markers, showing proangiogenic potential. These results suggest that the mineralized nanocomposite scaffolds can enhance bone regeneration by simultaneously promoting osteogenesis and angiogenesis.


Assuntos
Nanopartículas , Alicerces Teciduais , Biomimética , Regeneração Óssea , Diferenciação Celular , Celulose/farmacologia , Células Endoteliais , Nanopartículas/química , Osteogênese , Engenharia Tecidual/métodos , Alicerces Teciduais/química
3.
Adv Healthc Mater ; 11(8): e2102076, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34927396

RESUMO

The heterogeneity of hierarchical tissues requires designing multipart engineered constructs as suitable tissue replacements. Herein, the incorporation of platelet lysate (PL) within an electrospun fiber core is proposed aiming for the fabrication of functionally graded 3D scaffolds for heterotypic tissues regeneration, such as tendon-to-bone interfaces. First, anisotropic yarns (A-Yarns) and isotropic threads with nanohydroxyapatite (I-Threads/PL@nHAp) are fabricated to recreate the tendon- and bone-microstructures and both incorporated with PL using emulsion electrospinning for a sustained and local delivery of growth factors, cytokines, and chemokines. Biological performance using human adipose-derived stem cells demonstrates that A-Yarns/PL induce a higher expression of scleraxis, a tenogenic-marker, while in I-Threads/PL@nHAp, higher alkaline phosphatase activity and matrix mineralization suggest an osteogenic commitment without the need for biochemical supplementation compared to controls. As a proof-of-concept, functional 3D gradient scaffolds are fabricated using a weaving technique, resulting in 3D textured hierarchical constructs with gradients in composition and topography. Additionally, the precise delivery of bioactive cues together with in situ biophysical features guide the commitment into a phenotypic gradient exhibiting chondrogenic and osteochondrogenic profiles in the interface of scaffolds. Overall, a promising patch solution for the regeneration of tendon-to-bone tissue interface through the fabrication of PL-functional 3D gradient constructs is demonstrated.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Osso e Ossos , Humanos , Células-Tronco , Tendões/metabolismo , Alicerces Teciduais/química
4.
Int J Mol Sci ; 21(15)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751697

RESUMO

Inflammation is part of the natural healing response, but it has been simultaneously associated with tendon disorders, as persistent inflammatory events contribute to physiological changes that compromise tendon functions. The cellular interactions within a niche are extremely important for healing. While human tendon cells (hTDCs) are responsible for the maintenance of tendon matrix and turnover, macrophages regulate healing switching their functional phenotype to environmental stimuli. Thus, insights on the hTDCs and macrophages interactions can provide fundamental contributions on tendon repair mechanisms and on the inflammatory inputs in tendon disorders. We explored the crosstalk between macrophages and hTDCs using co-culture approaches in which hTDCs were previously stimulated with IL-1ß. The potential modulatory effect of the pulsed electromagnetic field (PEMF) in macrophage-hTDCs communication was also investigated using the magnetic parameters identified in a previous work. The PEMF influences a macrophage pro-regenerative phenotype and favors the synthesis of anti-inflammatory mediators. These outcomes observed in cell contact co-cultures may be mediated by FAK signaling. The impact of the PEMF overcomes the effect of IL-1ß-treated-hTDCs, supporting PEMF immunomodulatory actions on macrophages. This work highlights the relevance of intercellular communication in tendon healing and the beneficial role of the PEMF in guiding inflammatory responses toward regenerative strategies.


Assuntos
Comunicação Celular/genética , Inflamação/genética , Interleucina-1beta/genética , Ativação de Macrófagos/genética , Comunicação Celular/efeitos da radiação , Polaridade Celular/genética , Polaridade Celular/efeitos da radiação , Técnicas de Cocultura , Campos Eletromagnéticos , Humanos , Inflamação/imunologia , Inflamação/terapia , Macrófagos/imunologia , Macrófagos/metabolismo , Magnetoterapia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos da radiação , Transdução de Sinais , Traumatismos dos Tendões/genética , Traumatismos dos Tendões/patologia , Traumatismos dos Tendões/terapia , Tendões/metabolismo , Tendões/patologia , Tendões/efeitos da radiação , Fator de Necrose Tumoral alfa/genética , Cicatrização/genética , Cicatrização/efeitos da radiação
5.
Adv Healthc Mater ; 8(15): e1900200, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31190369

RESUMO

Tendon-to-bone interfaces exhibit a hierarchical multitissue transition. To replicate the progression from mineralized to nonmineralized tissue, a novel 3D fibrous scaffold is fabricated with spatial control over mineral distribution and cellular alignment. For this purpose, wet-spun continuous microfibers are produced using polycaprolactone (PCL)/ gelatin and PCL/gelatin/hydroxyapatite nano-to-microparticles (HAp). Higher extrusion rates result in aligned PCL/gelatin microfibers while, in the case of PCL/gelatin/HAp, the presence of minerals leads to a less organized structure. Biological performance using human adipose-derived stem cells (hASCs) demonstrates that topography of PCL/gelatin microfibers can induce cytoskeleton elongation, resembling native tenogenic organization. Matrix mineralization on PCL/gelatin/HAp wet-spun composite microfibers suggest the production of an osteogenic-like matrix, without external addition of osteogenic medium supplementation. As proof of concept, a 3D gradient structure is produced by assembling PCL/gelatin and PCL/gelatin/HAp microfibers, resulting in a fibrous scaffold with a continuous topographical and compositional gradient. Overall, the feasibility of wet-spinning for the generation of continuously aligned and textured microfibers is demonsrated, which can be further assembled into more complex 3D gradient structures to mimic characteristic features of tendon-to-bone interfaces.


Assuntos
Engenharia Tecidual , Alicerces Teciduais/química , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Técnicas de Cultura de Células/métodos , Sobrevivência Celular/efeitos dos fármacos , Durapatita/química , Matriz Extracelular/química , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Gelatina/química , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Poliésteres/química , Tendões/efeitos dos fármacos , Tendões/metabolismo , Resistência à Tração , Têxteis
6.
J Mater Sci Mater Med ; 29(6): 88, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29904797

RESUMO

The restoration of dentine-pulp complex remains a challenge for dentists; nonetheless, it has been poorly addressed. An ideal system should modulate the host response, as well as enable the recruitment, proliferation and differentiation of relevant progenitor cells. Herein was proposed a photocrosslinkable hydrogel system based on hyaluronic acid (HA) and platelet lysate (PL). PL is a cocktail of growth factors (GFs) and cytokines involved in wound healing orchestration, obtained by the cryogenic processing of platelet concentrates, and was expected to provide the HA hydrogels specific biochemical cues to enhance pulp cells' recruitment, proliferation and differentiation. Stable HA hydrogels incorporating PL (HAPL) were prepared after photocrosslinking of methacrylated HA (Met-HA) previously dissolved in PL, triggered by the Ultra Violet activated photoinitiator Irgacure 2959. Both the HAPL and plain HA hydrogels were shown to be able to recruit cells from a cell monolayer of human dental pulp stem cells (hDPSCs) isolated from permanent teeth. The hDPCs were also seeded directly over the hydrogels (5 × 104 cells/hydrogel) and cultured in osteogenic conditions. Cell metabolism and DNA quantification were higher, in all time-points, for PL supplemented hydrogels (p < 0,05). Alkaline phosphatase (ALPL) activity and calcium quantification peaks were observed for the HAPL group at 21 days (p < 0,05). The gene expression for ALPL and COLIA1 was up-regulated at 21 days to HAPL, compared with HA group (p < 0,05). Within the same time point, the gene expression for RUNX2 did not differ between the groups. Overall, data demonstrated that the HA hydrogels incorporating PL increased the cellular metabolism and stimulate the mineralized matrix deposition by hDPSCs, providing clear evidence of the potential of the proposed system for the repair of damaged pulp/dentin tissue and endodontics regeneration.


Assuntos
Plaquetas/citologia , Ácido Hialurônico/química , Hidrogéis/química , Células-Tronco/citologia , Fosfatase Alcalina/metabolismo , Cálcio/química , Diferenciação Celular , Proliferação de Células , Quimiotaxia , Reagentes de Ligações Cruzadas/química , Polpa Dentária/citologia , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Osteogênese , Fotoquímica , Regeneração , Engenharia Tecidual , Dente/citologia
7.
J Cell Physiol ; 233(10): 6395-6405, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29741815

RESUMO

Tendons are mechanosensitive tissues that connect and transmit the forces generated by muscles to bones by allowing the conversion of mechanical input into biochemical signals. These physical forces perform the fundamental work of preserving tendon homeostasis assuring body movements. However, overloading causes tissue injuries, which leads us to the field of tendon regeneration. Recently published reviews have broadly shown the use of biomaterials and different strategies to attain tendon regeneration. In this review, our focus is the use of magnetic fields as an alternative therapy, which has demonstrated clinical relevance in tendon medicine because of their ability to modulate cell fate. Yet the underlying cellular and molecular mechanisms still need to be elucidated. While providing a brief outlook about specific signalling pathways and intracellular messengers as framework in play by tendon cells, application of magnetic fields as a subcategory of physical forces is explored, opening up a compelling avenue to enhance tendon regeneration. We outline here useful insights on the effects of magnetic fields both at in vitro and in vivo levels, particularly on the expression of tendon genes and inflammatory cytokines, ultimately involved in tendon regeneration. Subsequently, the potential of using magnetically responsive biomaterials in tendon tissue engineering is highlighted and future directions in magnetotherapy are discussed.


Assuntos
Campos Magnéticos , Traumatismos dos Tendões/terapia , Tendões/efeitos da radiação , Engenharia Tecidual , Animais , Diferenciação Celular/efeitos da radiação , Homeostase , Humanos , Músculos/efeitos da radiação , Regeneração/efeitos da radiação , Traumatismos dos Tendões/fisiopatologia , Tendões/crescimento & desenvolvimento , Cicatrização/efeitos da radiação
8.
Injury ; 48(8): 1768-1775, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28601248

RESUMO

Bone turnover markers (BTMs) have been considered as an auxiliary method of following the fracture healing process and for early prediction of impaired bone healing. A better understanding of the potential of BTMs in this application could allow for earlier interventions and improved patient care. The aim of this study with a large animal experimental model was to assess the variation of bone formation markers - namely the total alkaline phosphatase (ALP) and its bone-specific isoform (BALP), serum concentration of intact osteocalcin (OC), N-terminal propeptide type III procollagen (PIIINP) and of bone resorption markers - namely tartrate resistant acid phosphatase (TRAP) and deoxypyridinoline crosslink (DPD) during the first stages of a normal fracture healing process and of a segmental critical size defect (CSD), which progresses to a non-union process. Thirty healthy female sheep (Portuguese Churra-da-Terra-Quente breed), approximately 4-years-old, were enrolled in this study. Jugular venous blood samples were collected pre-operatively and at 1, 2, 3, 4, 6, 8, 10 and 12 post-operative weeks. The animals of the CSD group showed significant lower serum levels of BALP, OC and significant higher serum PIIINP levels at early stages of the fracture healing process, compared with animals that progressed in a normal fracture healing process. Serum BALP, OC and PIIINP levels could be useful as non-invasive auxiliary tools with other complementary methods for predicting the outcome of traumatic bone fractures.


Assuntos
Pesquisa Biomédica , Remodelação Óssea/fisiologia , Consolidação da Fratura/fisiologia , Fraturas Ósseas/sangue , Fraturas não Consolidadas/sangue , Minerais/sangue , Ortopedia , Fosfatase Alcalina/sangue , Aminoácidos , Animais , Biomarcadores/sangue , Feminino , Fraturas Ósseas/fisiopatologia , Fraturas não Consolidadas/fisiopatologia , Modelos Animais , Osteocalcina/sangue , Fragmentos de Peptídeos , Valor Preditivo dos Testes , Pró-Colágeno , Ovinos/sangue , Fosfatase Ácida Resistente a Tartarato
9.
Acta Biomater ; 10(10): 4175-85, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24905935

RESUMO

Osteogenic differentiation is a tightly regulated process dependent on the stimuli provided by the micro-environment. Silicon-substituted materials are known to have an influence on the osteogenic phenotype of undifferentiated and bone-derived cells. This study aims to investigate the bioactivity profile as well as the mechanical properties of a blend of starch and poly-caprolactone (SPCL) polymeric fiber mesh scaffolds functionalized with silanol (Si-OH) groups as key features for bone tissue engineering strategies. The scaffolds were made from SPCL by a wet spinning technique. A calcium silicate solution was used as a non-solvent to develop an in situ functionalization with Si-OH groups in a single-step approach. We also explored the relevance of silicon incorporated in SPCL-Si scaffolds to the in vitro osteogenic process of goat bone marrow stromal cells (gBMSCs) with and without osteogenic supplements in the culture medium. We hypothesized that SPCL-Si scaffolds could act as physical and chemical millieus to induce per se the osteogenic differentiation of gBMSCs. Results show that osteogenic differentiation of gBMSCs and the production of a mineralized extracellular matrix on bioactive SPCL-Si scaffolds occur for up to 2weeks, even in the absence of osteogenic supplements in the culture medium. The omission of media supplements to induce osteogenic differentiation is a promising feature towards simplified and cost-effective cell culturing procedures of a potential bioengineered product, and concomitant translation into the clinical field. Thus, the present work demonstrates that SPCL-Si scaffolds and their intrinsic properties sustain gBMSC osteogenic features in vitro, even in the absence of osteogenic supplements to the culture medium, and show great potential for bone regeneration strategies.


Assuntos
Células da Medula Óssea/metabolismo , Regeneração Óssea , Calcificação Fisiológica , Diferenciação Celular , Osteogênese , Silanos/química , Alicerces Teciduais/química , Animais , Células da Medula Óssea/citologia , Compostos de Cálcio/química , Células Cultivadas , Cabras , Poliésteres/química , Silicatos/química , Amido/química , Células Estromais/citologia , Células Estromais/metabolismo
10.
Lab Anim (NY) ; 43(1): 21-6, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24356018

RESUMO

Changes in bone remodeling during pathological states and during their treatment can be assessed noninvasively by measuring biomarkers of bone metabolism. Their application is limited, however, by the potential biological variability in the levels of these biomarkers over time. To determine the short-term variability in biomarkers of bone metabolism in adult sheep, the authors measured serum levels of alkaline phosphatase (ALP), bone-specific alkaline phosphatase (BALP), osteocalcin (OC), N-terminal propeptide of type-III procollagen (PIIINP), deoxypyridinoline (DPD), tartrate-resistant acid phosphatase (TRAP), calcium and phosphorus intermittently over a 12-week period. There were significant differences in mean ALP activity and in phosphorus concentrations over time, but all other biomarkers showed no significant short-term variability. The results suggest that biomarkers of bone metabolism in sheep, especially the bone resorption marker DPD and the bone formation marker BALP, can be used reliably to detect changes in bone cellular activity.


Assuntos
Biomarcadores/sangue , Remodelação Óssea/fisiologia , Osso e Ossos/metabolismo , Ovinos/metabolismo , Fosfatase Ácida/sangue , Fosfatase Alcalina/sangue , Aminoácidos/sangue , Animais , Osso e Ossos/fisiologia , Cálcio/sangue , Isoenzimas/sangue , Osteocalcina/sangue , Fragmentos de Peptídeos/sangue , Fósforo/sangue , Portugal , Pró-Colágeno/sangue , Ovinos/fisiologia , Estatísticas não Paramétricas , Fosfatase Ácida Resistente a Tartarato , Fatores de Tempo
11.
J Tissue Eng Regen Med ; 7(9): 673-86, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22499564

RESUMO

Musculoskeletal diseases are one of the leading causes of disability worldwide. Among them, tendon and ligament injuries represent an important aspect to consider in both athletes and active working people. Tendon and ligament damage is an important cause of joint instability, and progresses into early onset of osteoarthritis, pain, disability and eventually the need for joint replacement surgery. The social and economical burden associated with these medical conditions presents a compelling argument for greater understanding and expanding research on this issue. The particular physiology of tendons and ligaments (avascular, hypocellular and overall structural mechanical features) makes it difficult for currently available treatments to reach a complete and long-term functional repair of the damaged tissue, especially when complete tear occurs. Despite the effort, the treatment modalities for tendon and ligament are suboptimal, which have led to the development of alternative therapies, such as the delivery of growth factors, development of engineered scaffolds or the application of stem cells, which have been approached in this review.


Assuntos
Ligamentos/patologia , Tendões/patologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Reatores Biológicos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Instabilidade Articular/etiologia , Ligamentos/lesões , Desenho de Prótese , Estresse Mecânico , Traumatismos dos Tendões/terapia , Engenharia Tecidual/tendências
12.
J Tissue Eng Regen Med ; 6 Suppl 3: s47-59, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22684916

RESUMO

In this study, a new formulation of nanoparticles (NPs) based on the electrostatic interaction between chitosan and chondroitin sulphate (CH-CS NPs) is proposed for the controlled release of proteins and growth factors (GFs), specifically platelet lysates (PLs). These nanoparticulate carriers are particularly promising for protein entrapment because the interactions between the polysaccharides and the entrapped proteins mimic the interactions between chondroitin sulphate and proteins in the native extracellular matrix (ECM). Spherical non-cytotoxic NPs were successfully produced, exhibiting high encapsulation efficiency for physiological levels of GFs and a controlled protein release profile for > 1 month. Moreover, it was also observed that these NPs can be uptaken by human adipose-derived stem cells (hASCs), depending on the concentration of NPs in the culture medium and incubation time. This shows the versatility of the developed NPs, which, besides acting as a protein delivery system, can also be used in the future as intracellular carriers for bioactive agents, such as nucleotides. When the PL-loaded NPs were used as a replacement of bovine serum for in vitro hASCs culture, the viability and proliferation of hASCs was not compromised. The release of PLs from CH-CS NPs also proved to be effective for the enhancement of in vitro osteogenic differentiation of hASCs, as shown by the increased levels of mineralization, suggesting not only the effective role of the delivery system but also the role of PLs as an osteogenic supplement for bone tissue engineering and regenerative medicine applications.


Assuntos
Plaquetas , Osso e Ossos , Quitosana/administração & dosagem , Sulfatos de Condroitina/administração & dosagem , Nanopartículas , Medicina Regenerativa , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Diferenciação Celular , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Células-Tronco/metabolismo
13.
Acta Biomater ; 8(7): 2795-806, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22510402

RESUMO

The development of osteochondral tissue engineered interfaces would be a novel treatment for traumatic injuries and aging associated diseases that affect joints. This study reports the development of a bilayered scaffold, which consists of both bone and cartilage regions. On the other hand, amniotic fluid-derived stem cells (AFSCs) could be differentiated into either osteogenic or chondrogenic cells, respectively. In this study we have developed a bilayered scaffolding system, which includes a starch/polycaprolactone (SPCL) scaffold for osteogenesis and an agarose hydrogel for chondrogenesis. AFSC-seeded scaffolds were cultured for 1 or 2 weeks in an osteochondral-defined culture medium containing both osteogenic and chondrogenic differentiation factors. Additionally, the effect of the presence or absence of insulin-like growth factor-1 (IGF-1) in the culture medium was assessed. Cell viability and phenotypic expression were assessed within the constructs in order to determine the influence of the osteochondral differentiation medium. The results indicated that, after osteogenic differentiation, AFSCs that had been seeded onto SPCL scaffolds did not require osteochondral medium to maintain their phenotype, and they produced a protein-rich, mineralized extracellular matrix (ECM) for up to 2 weeks. However, AFSCs differentiated into chondrocyte-like cells appeared to require osteochondral medium, but not IGF-1, to synthesize ECM proteins and maintain the chondrogenic phenotype. Thus, although IGF-1 was not essential for creating osteochondral constructs with AFSCs in this study, the osteochondral supplements used appear to be important to generate cartilage in long-term tissue engineering approaches for osteochondral interfaces. In addition, constructs generated from agarose-SPCL bilayered scaffolds containing pre-differentiated AFSCs may be useful for potential applications in regeneration strategies for damaged or diseased joints.


Assuntos
Líquido Amniótico/citologia , Diferenciação Celular/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Meios de Cultura/farmacologia , Osteogênese/efeitos dos fármacos , Células-Tronco/citologia , Alicerces Teciduais/química , Agrecanas/metabolismo , Fosfatase Alcalina/metabolismo , Antraquinonas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Imobilizadas/citologia , Células Imobilizadas/efeitos dos fármacos , Células Imobilizadas/metabolismo , Colágeno Tipo II/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Imunofluorescência , Humanos , Microscopia Eletrônica de Varredura , Poliésteres/farmacologia , Sefarose/farmacologia , Espectrometria por Raios X , Coloração e Rotulagem , Amido/farmacologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/enzimologia , Células-Tronco/ultraestrutura
14.
Tissue Eng Part A ; 15(2): 295-305, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18721077

RESUMO

The present work studies the influence of hydrolytic enzymes (alpha-amylase or lipase) on the degradation of fiber mesh scaffolds based on a blend of starch and poly(epsilon-caprolactone) (SPCL) and the osteogenic differentiation of osteogenic medium-expanded rat bone marrow stromal cells (MSCs) and subsequent formation of extracellular matrix on these scaffolds under static culture conditions. The biodegradation profile of SPCL fiber meshes was investigated using enzymes that are specifically responsible for the enzymatic hydrolysis of SPCL using concentrations similar to those found in human serum. These degradation studies were performed under static and dynamic conditions. After several degradation periods (3, 7, 14, 21, and 30 days), weight loss measurements and micro-computed tomography analysis (specifically porosity, interconnectivity, mean pore size, and fiber thickness) were performed. The SPCL scaffolds were seeded with rat MSCs and cultured for 8 and 16 days using complete osteogenic media with and without enzymes (alpha-amylase or lipase). Results indicate that culture medium supplemented with enzymes enhanced cell proliferation after 16 days of culture, whereas culture medium without enzymes did not. No calcium was detected in groups cultured with alpha-amylase or without enzymes after each time period, although groups cultured with lipase presented calcium deposition after the eighth day, showing a significant increase at the sixteenth day. Lipase appears to positively influence osteoblastic differentiation of rat MSCs and to enhance matrix mineralization. Furthermore, scanning electron microscopy images showed that the enzymes did not have a deleterious effect on the three-dimensional structure of SPCL fiber meshes, meaning that the scaffolds did not lose their structural integrity after 16 days. Confocal micrographs have shown cells to be evenly distributed and infiltrated within the SPCL fiber meshes up to 410 microm from the surface. This study demonstrates that supplementation of culture media with lipase holds great potential for the generation of bone tissue engineering constructs from MSCs seeded onto SPCL fiber meshes, because lipase enhances the osteoblastic differentiation of the seeded MSCs and promotes matrix mineralization without harming the structural integrity of the meshes over 16 days of culture.


Assuntos
Lipase/metabolismo , Osteogênese , Poliésteres/metabolismo , Amido/metabolismo , Células Estromais/citologia , Alicerces Teciduais/química , alfa-Amilases/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Células da Medula Óssea/citologia , Cálcio/metabolismo , Diferenciação Celular , Células Cultivadas , Humanos , Concentração de Íons de Hidrogênio , Microscopia Confocal , Porosidade , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier , Células Estromais/enzimologia , Células Estromais/ultraestrutura , Redução de Peso , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA