Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Food Funct ; 8(12): 4336-4346, 2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-28937704

RESUMO

Circulating levels of free fatty acids (FFAs) are often found to be increased in patients with type 2 diabetes mellitus (T2DM) and metabolic syndrome (MS). High plasma FFA levels may give rise to maladaptive macrophage activation and promote inflammatory responses, which has been proposed as a potential mechanism for the development of DM and MS. P2X4 receptor (P2X4R), a ligand-gated cation channel activated by extracellular adenosine triphosphate (ATP), plays a primary role in the regulation of inflammatory responses. Puerarin has been reported to possess potential anti-inflammatory activity. However, the anti-inflammatory activity of puerarin and the underlying molecular mechanisms in a setting of a high concentration of FFAs remain unknown. In this study, we found that a high concentration of FFAs increased the expression of P2X4R, cytosolic Ca2+ concentration and the phosphorylation of extracellular signal-regulated kinase (ERK) and induced the expression of tumor necrosis factor (TNF)-α and inducible nitric oxide synthase (iNOS) mRNA and the release of TNF-α and nitric oxide (NO) in RAW264.7 macrophages. Such a high concentration FFA-induced inflammation may be reversed by the P2X4R selective antagonist 5-BDBD, which manifests the important role of P2X4R in the TNF-α and NO release caused by the high concentration of FFAs in RAW264.7 cells. Molecular docking data showed that puerarin could interfere with the activation of P2X4R by forming hydrogen bonding towards residue Arg267, an important residue essential for the canonical activation of P2X4R. Treatment with puerarin dose-dependently reduced high concentration FFA-elevated P2X4R expression and inhibited P2X4R-mediated inflammatory signalling, including high concentration FFA-evoked [Ca2+]i, ERK phosphorylation, expression of TNF-α and iNOS mRNA and release of TNF-α and NO. Our findings emphasize the critical role of P2X4R in high concentration FFA-induced TNF-α and NO release of RAW264.7 macrophages. Puerarin notably counteracts these high concentration FFA-induced adverse effects through its inhibition of P2X4R expression and P2X4R-mediated inflammatory signalling.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Ácidos Graxos não Esterificados/metabolismo , Ácidos Graxos/efeitos adversos , Isoflavonas/farmacologia , Óxido Nítrico/metabolismo , Substâncias Protetoras/farmacologia , Pueraria/química , Receptores Purinérgicos P2X4/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Ácidos Graxos/metabolismo , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Células RAW 264.7 , Receptores Purinérgicos P2X4/genética , Fator de Necrose Tumoral alfa/genética
2.
Nucleic Acids Res ; 41(5): 3240-56, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23341039

RESUMO

Impaired brain glucose uptake and metabolism precede the appearance of clinical symptoms in Alzheimer disease (AD). Neuronal glucose transporter 3 (GLUT3) is decreased in AD brain and correlates with tau pathology. However, what leads to the decreased GLUT3 is yet unknown. In this study, we found that the promoter of human GLUT3 contains three potential cAMP response element (CRE)-like elements, CRE1, CRE2 and CRE3. Overexpression of CRE-binding protein (CREB) or activation of cAMP-dependent protein kinase significantly increased GLUT3 expression. CREB bound to the CREs and promoted luciferase expression driven by human GLUT3-promoter. Among the CREs, CRE2 and CRE3 were required for the promotion of GLUT3 expression. Full-length CREB was decreased and truncation of CREB was increased in AD brain. This truncation was correlated with calpain I activation in human brain. Further study demonstrated that calpain I proteolysed CREB at Gln28-Ala29 and generated a 41-kDa truncated CREB, which had less activity to promote GLUT3 expression. Importantly, human brain GLUT3 was correlated with full-length CREB positively and with activation of calpain I negatively. These findings suggest that overactivation of calpain I caused by calcium overload proteolyses CREB, resulting in a reduction of GLUT3 expression and consequently impairing glucose uptake and metabolism in AD brain.


Assuntos
Doença de Alzheimer/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , Lobo Frontal/metabolismo , Regulação da Expressão Gênica , Transportador de Glucose Tipo 3/genética , Idoso , Idoso de 80 Anos ou mais , Sequência de Bases , Calpaína/química , Calpaína/metabolismo , Estudos de Casos e Controles , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/química , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação para Baixo , Feminino , Genes Reporter , Transportador de Glucose Tipo 3/metabolismo , Células HEK293 , Humanos , Luciferases de Renilla/biossíntese , Luciferases de Renilla/genética , Masculino , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/fisiologia , Proteólise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Elementos de Resposta , Transdução de Sinais
3.
J Mol Neurosci ; 20(3): 425-9, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14501027

RESUMO

Neurofibrillary degeneration has primary and pivotal involvement in the pathogenesis of Alzheimer disease (AD) and other tauopathies. The inhibition of this lesion offers a promising therapeutic approach. The microtubule- associated protein (MAP) tau is abnormally hyperphosphorylated in the brain of patients with AD, and in this form it is the major protein subunit of paired helical filaments/neurofibrillary tangles (PHF/NFT). The abnormal tau that is polymerized into PHF/NFT is apparently inert and has no effect on microtubule assembly in vitro. The cytosolic abnormally hyperphosphorylated tau from AD brain, the AD P-tau, does not promote in vitro microtubule assembly but, instead, sequesters normal tau, MAP1, and MAP2 and inhibits microtubule assembly. The AD P-tau readily self-assembles in vitro into tangles of PHF/straight filaments, and this self-assembly requires the abnormal hyperphosphorylation of this protein. Although, to date, an up-regulation of the activity of a tau kinase has not been established, the activity of phosphoseryl/ phosphothreonyl protein phosphatase (PP)-2A, which regulates the phosphorylation of tau, is compromised in AD brain. Thus, modulation of the activities of pp-2A and one or more tau kinases and inhibition of the sequestration of normal MAPs by AD P-tau offer promising therapeutic opportunities to inhibit neurofibrillary degeneration and the diseases characterized by this lesion. Development of high-throughput screening assays for potential drugs aimed at these therapeutic targets is currently under way.


Assuntos
Doença de Alzheimer/metabolismo , Emaranhados Neurofibrilares/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/fisiopatologia , Animais , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Microtúbulos/metabolismo , Microtúbulos/patologia , Emaranhados Neurofibrilares/efeitos dos fármacos , Emaranhados Neurofibrilares/patologia , Fosfoproteínas Fosfatases/efeitos dos fármacos , Fosfoproteínas Fosfatases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas tau/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA