Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(36): 86425-86436, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37405603

RESUMO

A biological aluminum-based P-inactivation agent (BA-PIA) has been developed and demonstrated to effectively remove nitrogen and phosphorus; however, whether it can control the release of nitrogen and phosphorus in sediment still needs study. This study aimed to examine the effect of BA-PIA on controlling sediment nitrogen and phosphorus release. BA-PIA was prepared by artificial aeration. The use of BA-PIA in controlling nitrogen and phosphorus release was studied using water and sediment from a landscape lake in static simulation experiments. The sediment microbial community was analyzed using high-throughput sequencing. Static simulation showed that the reduction rates of total nitrogen (TN) and total phosphorus (TP) by BA-PIA were 66.8 ± 1.46% and 96.0 ± 0.98%, respectively. In addition, capping of BA-PIA promotes the conversion of easily released nitrogen (free nitrogen) in the sediment to stable nitrogen (acid-hydrolyzable nitrogen). The content of weakly adsorbed phosphorus and iron-adsorbed phosphorus in the sediment was reduced. The relative abundance of nitrifying bacteria, denitrifying bacteria, and microorganisms carrying phosphatase genes (such as Actinobacteria) in the sediment increased by 109.78%. The capping of BA-PIA not only effectively removed the nitrogen and phosphorus in water but greatly reduced the risk of nitrogen and phosphorus release from sediment. BA-PIA was able to make up for the deficiency of the aluminum-based phosphorus-locking agent (Al-PIA) that only removes phosphorus, giving it improved application prospects.


Assuntos
Alumínio , Poluentes Químicos da Água , Fósforo , Nitrogênio/análise , Fatores Biológicos , Sedimentos Geológicos , Poluentes Químicos da Água/análise , Lagos , Água
2.
J Environ Sci (China) ; 19(8): 1014-9, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17966859

RESUMO

Various kinds of pathogenic bacteria derived from the intestinal tract of animals exist in compost material like cow dung. In order to sterilize the pathogenic bacteria completely in compost material, the cow dung was put into a heat treatment machine in pilot plan, and harmless condition in short time was examined. The results indicated, pathogenic indicator bacteria such as coliform bacteria, fecal coliform, Escherichia coli and salmonella were all 106 cfu/g dw at the beginning, died rapidly when cow dung temperature rose to above 50 degrees C, and not detected at 54-68 degrees C for 6-24 h heat treatment. Coliform bacteria and salmonella in heated cow dung were not detected by re-growth culture and enrichment culture examination. Moreover, it was hardly influenced on the fermentation ability of composting microbe, organic decomposition bacteria. During heat treatment, the mesophile decreased rapidly and the thermophile stabilized or increased, and the most of composting microbe were bacillus in cow dung by fluorescence microscope, this indicated that bacillus was dominator and composting microbe in composting process.


Assuntos
Enterobacteriaceae/crescimento & desenvolvimento , Temperatura Alta , Esterco/microbiologia , Solo , Animais , Bovinos , Contagem de Colônia Microbiana , Enterobacteriaceae/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA