Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain Behav ; 13(11): e3241, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37721727

RESUMO

BACKGROUND: Internet addiction (IA), recognized as a behavioral addiction, is emerging as a global public health problem. Acupuncture has been demonstrated to be effective in alleviating IA; however, the mechanism is not yet clear. To fill this knowledge gap, our study aimed to investigate the modulatory effects of acupuncture on the functional interactions among the addiction-related networks in adolescents with IA. METHODS: Thirty individuals with IA and thirty age- and sex-matched healthy control subjects (HCs) were recruited. Subjects with IA were given a 40-day acupuncture treatment, and resting-state functional magnetic resonance imaging (fMRI) data were collected before and after acupuncture sessions. HCs received no treatment and underwent one fMRI scan after enrollment. The intergroup differences in functional connectivity (FC) among the subcortical nucleus (SN) and fronto-parietal network (FPN) were compared between HCs and subjects with IA at baseline. Then, the intragroup FC differences between the pre- and post-treatment were analyzed in the IA group. A multiple linear regression model was further employed to fit the FC changes to symptom relief in the IA group. RESULTS: In comparison to HCs, subjects with IA exhibited significantly heightened FC within and between the SN and FPN at baseline. After 40 days of acupuncture treatment, the FC within the FPN and between the SN and FPN were significantly decreased in individuals with IA. Symptom improvement in subjects with IA was well fitted by the decrease in FC between the left midbrain and ventral prefrontal cortex and between the left thalamus and ventral anterior prefrontal cortex. CONCLUSION: These findings confirmed the modulatory effects of acupuncture on the aberrant functional interactions among the SN and FPN, which may partly reflect the neurophysiological mechanism of acupuncture for IA.


Assuntos
Terapia por Acupuntura , Transtorno de Adição à Internet , Humanos , Adolescente , Imageamento por Ressonância Magnética/métodos , Córtex Pré-Frontal , Terapia por Acupuntura/métodos , Tálamo , Convulsões , Encéfalo , Mapeamento Encefálico/métodos
2.
Hum Brain Mapp ; 42(11): 3440-3449, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33830581

RESUMO

The aberrant thalamocortical pathways of epilepsy have been detected recently, while its underlying effects on epilepsy are still not well understood. Exploring pathoglytic changes in two important thalamocortical pathways, that is, the basal ganglia (BG)-thalamocortical and the cerebellum-thalamocortical pathways, in people with idiopathic generalized epilepsy (IGE), could deepen our understanding on the pathological mechanism of this disease. These two pathways were reconstructed and investigated in this study by combining diffusion and functional MRI. Both pathways showed connectivity changes with the perception and cognition systems in patients. Consistent functional connectivity (FC) changes were observed mainly in perception regions, revealing the aberrant integration of sensorimotor and visual information in IGE. The pathway-specific FC alterations in high-order regions give neuroimaging evidence of the neural mechanisms of cognitive impairment and epileptic activities in IGE. Abnormal functional and structural integration of cerebellum, basal ganglia and thalamus could result in an imbalance of inhibition and excitability in brain systems of IGE. This study located the regulated cortical regions of BG and cerebellum which been affected in IGE, established possible links between the neuroimaging findings and epileptic symptoms, and enriched the understanding of the regulatory effects of BG and cerebellum on epilepsy.


Assuntos
Gânglios da Base/fisiopatologia , Cerebelo/fisiopatologia , Córtex Cerebral/fisiopatologia , Conectoma , Epilepsia Generalizada/fisiopatologia , Rede Nervosa/fisiopatologia , Tálamo/fisiopatologia , Adulto , Gânglios da Base/diagnóstico por imagem , Cerebelo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Epilepsia Generalizada/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Tálamo/diagnóstico por imagem , Adulto Jovem
3.
Br J Psychiatry ; 214(5): 288-296, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30791964

RESUMO

BACKGROUND: Previous studies in schizophrenia revealed abnormalities in the cortico-cerebellar-thalamo-cortical circuit (CCTCC) pathway, suggesting the necessity for defining thalamic subdivisions in understanding alterations of brain connectivity.AimsTo parcellate the thalamus into several subdivisions using a data-driven method, and to evaluate the role of each subdivision in the alterations of CCTCC functional connectivity in patients with schizophrenia. METHOD: There were 54 patients with schizophrenia and 42 healthy controls included in this study. First, the thalamic structural and functional connections computed, based on diffusion magnetic resonance imaging (MRI, white matter tractography) and resting-state functional MRI, were clustered to parcellate thalamus. Next, functional connectivity of each thalamus subdivision was investigated, and the alterations in thalamic functional connectivity for patients with schizophrenia were inspected. RESULTS: Based on the data-driven parcellation method, six thalamic subdivisions were defined. Loss of connectivity was observed between several thalamic subdivisions (superior-anterior, ventromedial and dorsolateral part of the thalamus) and the sensorimotor system, anterior cingulate cortex and cerebellum in patients with schizophrenia. A gradual pattern of dysconnectivity was observed across the thalamic subdivisions. Additionally, the altered connectivity negatively correlated with symptom scores and duration of illness in individuals with schizophrenia. CONCLUSIONS: The findings of the study revealed a wide range of thalamic functional dysconnectivity in the CCTCC pathway, increasing our understanding of the relationship between the CCTCC pathway and symptoms associated with schizophrenia, and further indicating a potential alteration pattern in the thalamic nuclei in people with schizophrenia.Declaration of interestNone.


Assuntos
Cerebelo/diagnóstico por imagem , Giro do Cíngulo/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Esquizofrenia/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Adulto , Antipsicóticos/uso terapêutico , Clorpromazina/uso terapêutico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/diagnóstico por imagem , Esquizofrenia/tratamento farmacológico
4.
Int J Neural Syst ; 29(5): 1850032, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30149746

RESUMO

Neuroimaging studies have suggested the presence of abnormalities in the prefrontal-thalamic-cerebellar circuit in schizophrenia (SCH) and depression (DEP). However, the common and distinct structural and causal connectivity abnormalities in this circuit between the two disorders are still unclear. In the current study, structural and resting-state functional magnetic resonance imaging (fMRI) data were acquired from 20 patients with SCH, 20 depressive patients and 20 healthy controls (HC). Voxel-based morphometry analysis was first used to assess gray matter volume (GMV). Granger causality analysis, seeded at regions with altered GMVs, was subsequently conducted. To discover the differences between the groups, ANCOVA and post hoc tests were performed. Then, the relationships between the structural changes, causal connectivity and clinical variables were investigated. Finally, a leave-one-out resampling method was implemented to test the consistency. Statistical analyses showed the GMV and causal connectivity changes in the prefrontal-thalamic-cerebellar circuit. Compared with HC, both SCH and DEP exhibited decreased GMV in middle frontal gyrus (MFG), and a lower GMV in MFG and medial prefrontal cortex (MPFC) in SCH than DEP. Compared with HC, both patient groups showed increased causal flow from the right cerebellum to the MPFC (common causal connectivity abnormalities). And distinct causal connectivity abnormalities (increased causal connectivity from the left thalamus to the MPFC in SCH than HC and DEP, and increased causal connectivity from the right cerebellum to the left thalamus in DEP than HC and SCH). In addition, the structural deficits in the MPFC and its causal connectivity from the cerebellum were associated with the negative symptom severity in SCH. This study found common/distinct structural deficits and aberrant causal connectivity patterns in the prefrontal-thalamic-cerebellar circuit in SCH and DEP, which may provide a potential direction for understanding the convergent and divergent psychiatric pathological mechanisms between SCH and DEP. Furthermore, concomitant structural and causal connectivity deficits in the MPFC may jointly contribute to the negative symptoms of SCH.


Assuntos
Cerebelo/fisiopatologia , Depressão/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Esquizofrenia/fisiopatologia , Tálamo/fisiopatologia , Adolescente , Adulto , Estudos de Casos e Controles , Depressão/patologia , Feminino , Substância Cinzenta/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiopatologia , Neuroimagem , Córtex Pré-Frontal/patologia , Esquizofrenia/patologia , Índice de Gravidade de Doença , Adulto Jovem
5.
Radiology ; 287(2): 633-642, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29357273

RESUMO

Purpose To investigate the temporal and causal relationships of structural changes in the brain in patients with schizophrenia. Materials and Methods T1-weighted magnetic resonance (MR) images of 97 patients with schizophrenia (29 women; mean ± standard deviation age, 41 years ± 11.5; range, 16-66 years; illness duration, 16.3 years ± 10.9; range, 0-50 years) and 126 age- and sex-matched (38 years ± 14.9; range, 18-68 years; 42 women) healthy control subjects were evaluated. The causal network of structural covariance was used to assess the causal relationships of structural changes in patients with schizophrenia. This was accomplished by applying Granger causality analysis to the morphometric T1-weighted images ranked according to duration of disease. Results With greater disease duration, reduction in gray matter volume began in the thalamus and progressed to the frontal lobe, and then to the temporal and occipital cortices as well and the cerebellum (P < .00001, false discovery rate corrected). The thalamus was shown to be the primary hub of the directional network and exhibited positive causal effects on the frontal, temporal, and occipital regions as well as on the cerebellum (P < .05, false discovery rate corrected). The frontal regions, which were identified to be transitional points, projected causal effects to the occipital lobe, temporal regions, and the cerebellum and received causal effects from the thalamus (P < .05, false discovery rate corrected). Conclusion Schizophrenia shows progression of gray matter abnormalities over time, with the thalamus as the primary hub and the frontal regions as prominent nodes. © RSNA, 2018 Online supplemental material is available for this article. An earlier incorrect version of this article appeared online. This article was corrected on March 5, 2018.


Assuntos
Progressão da Doença , Lobo Frontal/patologia , Substância Cinzenta/patologia , Imageamento por Ressonância Magnética , Esquizofrenia/diagnóstico por imagem , Tálamo/patologia , Adolescente , Adulto , Idoso , Atrofia , Estudos Transversais , Feminino , Lobo Frontal/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiopatologia , Esquizofrenia/fisiopatologia , Tálamo/diagnóstico por imagem , Adulto Jovem
6.
Neuroimage ; 134: 475-485, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27103137

RESUMO

Motor imagery (MI)-based brain-computer interfaces (BCIs) have been widely used for rehabilitation of motor abilities and prosthesis control for patients with motor impairments. However, MI-BCI performance exhibits a wide variability across subjects, and the underlying neural mechanism remains unclear. Several studies have demonstrated that both the fronto-parietal attention network (FPAN) and MI are involved in high-level cognitive processes that are crucial for the control of BCIs. Therefore, we hypothesized that the FPAN may play an important role in MI-BCI performance. In our study, we recorded multi-modal datasets consisting of MI electroencephalography (EEG) signals, T1-weighted structural and resting-state functional MRI data for each subject. MI-BCI performance was evaluated using the common spatial pattern to extract the MI features from EEG signals. One cortical structural feature (cortical thickness (CT)) and two measurements (degree centrality (DC) and eigenvector centrality (EC)) of node centrality were derived from the structural and functional MRI data, respectively. Based on the information extracted from the EEG and MRI, a correlation analysis was used to elucidate the relationships between the FPAN and MI-BCI performance. Our results show that the DC of the right ventral intraparietal sulcus, the EC and CT of the left inferior parietal lobe, and the CT of the right dorsolateral prefrontal cortex were significantly associated with MI-BCI performance. Moreover, the receiver operating characteristic analysis and machine learning classification revealed that the EC and CT of the left IPL could effectively predict the low-aptitude BCI users from the high-aptitude BCI users with 83.3% accuracy. Those findings consistently reveal that the individuals who have efficient FPAN would perform better on MI-BCI. Our findings may deepen the understanding of individual variability in MI-BCI performance, and also may provide a new biomarker to predict individual MI-BCI performance.


Assuntos
Atenção/fisiologia , Interfaces Cérebro-Computador , Lobo Frontal/anatomia & histologia , Lobo Frontal/fisiologia , Imaginação/fisiologia , Lobo Parietal/anatomia & histologia , Lobo Parietal/fisiologia , Desempenho Psicomotor , Adulto , Mapeamento Encefálico , Eletroencefalografia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA