RESUMO
In the present study, a comprehensive strategy integrating affinity ultrafiltration high-performance liquid chromatography quadrupole-time-of-flight mass spectrometry (UF-HPLC-Q-TOF-MS), in silico molecular docking and bioassays was established to rapidly screen natural SOD activators from traditional Chinese medicines. As illustrative case studies, Schisandra chinensis, Fructus cnidii and Radix ophiopogonis were chosen to develop and verify the strategy. The HPLC-Q-TOF-MS was used to identify the compounds in comparison with reference standards and literature data. A total of eight compounds, including four biphenyl-cyclooctene ligands from Schisandra chinensis and four coumarins from Fructus cnidii, were found to potentially increase SOD activities. No ligands were found in the extract of Radix ophiopogonis. Then, in silico molecular docking was performed to investigate the binding site and binding affinity of the candidates on SOD. Compared to the nonspecific ligands screened from the extract, the specific ligands presented stronger binding affinities. In addition, the activity and kinetic parameters of the SOD-ligand were investigated through an improved pyrogallol autoxidation method. Gomisin J and xanthotoxin showed a stronger ability to increase SOD activities. The present study indicated that combining UF-HPLC-Q-TOF-MS and in silico molecular docking offers a powerful and meaningful tool to rapidly screen SOD activators from traditional Chinese medicines.
Assuntos
Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Medicamentos de Ervas Chinesas/química , Ultrafiltração/métodos , Cromatografia Líquida de Alta Pressão/métodos , Superóxido DismutaseRESUMO
Rheumatoid arthritis(RA), a chronic autoimmune disease, is featured by persistent joint inflammation. The development of RA is associated with the disturbance of endogenous metabolites and intestinal microbiota. Gardeniae Fructus(GF), one of the commonly used medicinal food in China, is usually prescribed for the prevention and treatment of jaundice, inflammation, ache, fever, and skin ulcers. GF exerts an effect on ameliorating RA, the mechanism of which remains to be studied. In this study, ultra-perfor-mance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS)-based serum non-target metabolomics and 16S rDNA high-throughput sequencing were employed to elucidate the mechanism of GF in ameliorating RA induced by complete Freund's adjuvant in rats. The results showed that GF alleviated the pathological conditions in adjuvant arthritis(AA) rats. The low-and high-dose GF lo-wered the serum levels of interleukin(IL)-6, tumor necrosis factor-α(TNF-α), IL-1ß, and prostaglandin E2 in the rats(P<0.05, P<0.01). Pathways involved in metabolomics were mainly α-linolenic acid metabolism and glycerophospholipid metabolism. The results of 16S rDNA sequencing showed that the Streptococcus, Facklamia, Klebsiella, Enterococcus, and Kosakonia were the critical gut microorganisms for GF to treat AA in rats. Spearman correlation analysis showed that the three differential metabolites PE-NMe[18:1(9Z)/20:0], PC[20:1(11Z)/18:3(6Z,9Z,12Z)], and PC[20:0/18:4(6Z,9Z,12Z,15Z)] were correlated with the differential bacteria. In conclusion, GF may ameliorate RA by regulating the composition of intestinal microbiota, α-linolenic acid metabolism, and glycerophospholipid metabolism. The findings provide new ideas and data for elucidating the mechanism of GF in relieving RA.
Assuntos
Artrite Reumatoide , Gardenia , Microbioma Gastrointestinal , Ratos , Animais , Cromatografia Líquida , Espectrometria de Massas em Tandem , Ácido alfa-Linolênico , Metabolômica/métodos , Artrite Reumatoide/tratamento farmacológico , Inflamação , GlicerofosfolipídeosRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Spatholobi caulis (SC), the dried vine stem of Spatholobus suberectus Dunn, is known as Ji Xue Teng in China, and has long been used as traditional Chinese medicine (TCM) to treat anaemia, menstrual abnormalities, rheumatoid arthritis, purpura, etc. AIM OF THE REVIEW: The aim of this review is to provide a systematic and updated summary of the traditional uses, chemical constituents, biological activities and clinical applications of SC. In addition, several suggestions for future research on SC are also proposed. MATERIALS AND METHODS: Extensive information and data on SC were obtained from electronic databases (ScienceDirect, Web of Science, PubMed, CNKI, Baidu Scholar, Google Scholar, ResearchGate, SpringerLink and Wiley Online). Additional information was collected from Ph.D. and MSc dissertations, published books, and classic material medica. RESULTS: To date, phytochemical studies have revealed that approximately 243 chemical ingredients have been isolated from SC and identified, including flavonoids, glycosides, phenolic acids, phenylpropanoids, volatile oils, sesquiterpenoids and other compounds. Many studies have indicated that extracts and pure constituents from SC possess a wide spectrum of in vitro and in vivo pharmacological effects, such as anti-tumour, haematopoietic, anti-inflammatory, antidiabetic, antioxidant, antiviral and antibacterial effects, as well as other activities. SC could be applied to the treatment of leukopenia, aplastic anemic, endometriosis, etc. according to the clinical reports. The traditional efficacies of SC is due to the biological functions of its chemical compounds, especially flavonoids. However, research investigating the toxicological effects of SC is relatively limited. CONCLUSIONS: SC is widely used in TCM formulae and its some traditional efficacies has been confirmed by extensive recent pharmacological and clinical studies. Most the biological activities of the SC may be attributed to flavonoids. However, in-depth studies on the molecular mechanisms of the effective ingredients and extracts of SC are limited. Further systematic studies focusing on pharmacokinetics, toxicology and quality control are needed to ensure the effective and safe application of SC.
Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Etnofarmacologia , Fitoterapia , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Flavonoides , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/químicaRESUMO
Herpetin, an active compound derived from the seeds of Herpetospermum caudigerum Wall., is a traditional Tibetan herbal medicine that is used for the treatment of hepatobiliary diseases. The aim of this study was to evaluate the stimulant effect of herpetin on bone marrow mesenchymal stem cells (BMSCs) to improve acute liver injury (ALI). In vitro results showed that herpetin treatment enhanced expression of the liver-specific proteins alpha-fetoprotein, albumin, and cytokeratin 18; increased cytochrome P450 family 3 subfamily a member 4 activity; and increased the glycogen-storage capacity of BMSCs. Mice with ALI induced by carbon tetrachloride (CCl4) were treated with a combination of BMSCs by tail-vein injection and herpetin by intraperitoneal injection. Hematoxylin and eosin staining and serum biochemical index detection showed that the liver function of ALI mice improved after administration of herpetin combined with BMSCs. Western blotting results suggested that the stromal cell-derived factor-1/C-X-C motif chemokine receptor 4 axis and the Wnt/ß-catenin pathway in the liver tissue were activated after treatment with herpetin and BMSCs. Therefore, herpetin is a promising BMSC induction agent, and coadministration of herpetin and BMSCs may affect the treatment of ALI.
Assuntos
Benzofuranos , Células-Tronco Mesenquimais , Camundongos , Animais , Tetracloreto de Carbono/toxicidade , Fígado , Benzofuranos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células da Medula ÓsseaRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Terminalia bellirica (Gaertn.) Roxb. (TB) is a traditional Tibetan medicine used to treat hepatobiliary diseases. However, modern pharmacological evidence of the activities and potential mechanisms of TB against nonalcoholic fatty liver disease (NAFLD) are still unknown. AIM OF THE STUDY: This study aimed to evaluate the anti-NAFLD effect of ethanol extract of TB (ETB) and investigate whether its ameliorative effects are associated with the regulation of intestinal microecology. MATERIALS AND METHODS: In this study, the curative effects of ETB on NAFLD were evaluated in mice fed a choline-deficient, L-amino acid defined, high fat diet (CDAHFD). Biochemical markers and hepatic histological alterations were detected. Gut microbiota and faecal metabolites were analyzed by 16S rRNA gene sequencing and liquid chromatograph mass spectrometer (LCâMS) profiling. RESULTS: The results showed that oral treatment with middle- and high-dose ETB significantly improved features of NAFLD, reducing the levels of TG, LDL-C, ALT and AST, and increasing the level of HDL-C. Liver histopathologic examination demonstrated that ETB attenuated lipid accumulation and hepatocellular necrosis. ETB treatment restored the structural disturbances of gut microbiota induced by CDAHFD, reduced the levels of Intestinimonas, Lachnoclostridium, and Lachnospirace-ae_FCS020_group, and increased Akkermansia and Bifidobacterium. Moreover, untargeted metabolomics analysis revealed that ETB could restore the disrupted taurine and hypotaurine metabolism, glycine, serine and threonine metabolism, and glutathione metabolism of the intestinal bacterial community in NAFLD mice. CONCLUSIONS: ETB was effective in ameliorating the NAFLD, possibly by remodelling the gut microbiota composition and modulating the faecal metabolism metabolites of the host, highlighting the potential of TB as a resource for the development of anti-NAFLD drugs.
Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Terminalia , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Etanol/farmacologia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Fígado , Dieta Hiperlipídica , Camundongos Endogâmicos C57BLRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Ershiwuwei Zhenzhu Pill (EZP), a representative and classic formula in Tibetan medicine, is commonly used in the treatment of various cerebrovascular diseases, including ischemic stroke (IS). Nevertheless, their efficacy and potential mechanism in treating IS have yet to be investigated. AIM OF THE STUDY: This study aimed to investigate the potential mechanisms of EZP in the treatment of IS based on network pharmacology and experimental verification. MATERIALS AND METHODS: The chemical profile of EZP was characterized using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). The targets related to the compounds in EZP were predicted by the Swiss Target Prediction and Target Net platform, and targets of IS were collected from the Gene Cards and OMIM databases. Subsequently, a protein-protein interaction (PPI) network of targets was constructed and analyzed by the STRING database and Cytoscape software, version 3.7.1. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed, and an ingredient-target-pathway network was constructed. Ultimately, the middle cerebral artery occlusion (MCAO) model was established to evaluate the anti-IS effects of EZP by detecting the neurological deficit score, HE, Nissl and TCC staining, and inflammatory factors, and the expression of key protein targets was detected by western blotting. RESULTS: A total of 129 components were identified in EZP. Network pharmacology revealed 3136 compound targets and 2826 disease-related targets, and 412 overlapping proteins were obtained as potential therapeutic targets. The PPI network results showed that 6 key targets (AKT1, SRC, VEGFA, TP53, TNF and EGFR) were core targets of EZP in the treatment of IS. Western blotting demonstrated that the expression levels of AKT1, VEGFA, TP53, SRC, TNF and EGFR in the brain tissue of MCAO rats were significantly changed after treatment with EZP compared to the model group. CONCLUSIONS: EZP ameliorated IS in MCAO rats. The underlying mechanism might be associated with inhibiting inflammation and apoptosis, promoting angiogenesis and protecting neurons by regulating multiple targets and pathways.
Assuntos
Medicamentos de Ervas Chinesas , AVC Isquêmico , Animais , Ratos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/química , Receptores ErbB , AVC Isquêmico/tratamento farmacológico , Simulação de Acoplamento Molecular , Farmacologia em Rede , Mapas de Interação de Proteínas , Medicina Tradicional TibetanaRESUMO
Phyllanthus emblica (PE), a traditional multiethnic herbal medicine, is commonly applied to treat liver diseases. Our previous study demonstrated that aqueous extract of PE (AEPE) could alleviate carbon tetrachloride (CCl4)-induced liver fibrosis in vivo, but the underlying molecular mechanisms are still unclear. The present study was undertaken to clarify the multitarget mechanisms of PE in treating liver fibrosis by proteomics clues. A CCl4-induced liver fibrosis rat model was established. The anti-liver fibrosis effects of chemical fractions from AEPE were evaluated by serum biochemical indicators and pathological staining. Additionally, tandem mass tag (TMT) - based quantitative proteomics technology was used to detect the hepatic differentially expressed proteins (DEPs). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, gene ontology (GO) enrichment and protein-protein interaction (PPI) network were used to perform bioinformatics analysis of DEPs. Western blot analysis was used to verify the key potential targets regulated by the effective fraction of AEPE. The low-molecular-weight fraction of AEPE (LWPE) was determined to be the optimal anti-liver fibrosis active fraction, that could significantly improve ALT, AST, HA, Col IV, PCIII, LN, Hyp levels and reduce the pathological fibrotic lesion of liver tissue in model rats. A total of 195 DEPs were screened after LWPE intervention. GO analysis showed that the DEPs were related mostly to extracellular matrix organization, actin binding, and extracellular exosomes. KEGG pathway analysis showed that DEPs are mainly related to ECM-receptor interactions, focal adhesion and PI3K-Akt signaling pathway. Combined with the GO, KEGG and Western blot results, COL1A2, ITGAV, TLR2, ACE, and PDGFRB may be potential targets for PE treatment of liver fibrosis. In conclusion, LWPE exerts therapeutic effects through multiple pathways and multiple targets regulation in the treatment of liver fibrosis. This study may provide proteomics clues for the continuation of research on liver fibrosis treatment with PE.
RESUMO
Accumulating evidence suggests that dysregulation of the intestinal flora potentially contributes to the occurrence and development of nonalcoholic fatty liver disease (NAFLD). Phyllanthus emblica (PE), an edible and medicinal natural resource, exerts excellent effects on ameliorating NAFLD, but the potential mechanism remains unclear. In the present study, a mouse NAFLD model was established by administering a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD). The protective effects of the aqueous extract of PE (AEPE) on the gut microbiota and fecal metabolites in NAFLD mice were detected by performing 16S rRNA gene sequencing and untargeted metabolomics. The administration of middle- and high-dose AEPE decreased the levels of ALT, AST, LDL-C, TG, and Hyp and increased HDL-C levels in CDAHFD-fed mice. Hematoxylin-eosin (H&E), Oil Red O, and Masson's trichrome staining indicated that AEPE treatment attenuated hepatic steatosis and fibrotic lesions. Moreover, the disordered intestinal microflora was remodeled by AEPE, including decreases in the abundance of Peptostreptococcaceae, Faecalibaculum, and Romboutsia. The untargeted metabolomics analysis showed that AEPE restored the disturbed glutathione metabolism, tryptophan metabolism, taurine and hypotaurine metabolism, and primary bile acid biosynthesis of the gut bacterial community in NAFLD mice, which strongly correlated with hepatic steatosis and fibrosis. Collectively, AEPE potentially ameliorates NAFLD induced by a CDAHFD through a mechanism associated with its modulatory effects on the gut microbiota and microbial metabolism.
RESUMO
Precious Tibetan medicine formula is a characteristic type of medicine commonly used in the clinical treatment of central nervous system diseases. Through the summary of modern research on the precious Tibetan medicine formulas such as Ratnasampil, Ershiwuwei Zhenzhu Pills, Ershiwewei Shanhu Pills, and Ruyi Zhenbao Pills, it is found that they have obvious advantages in the treatment of stroke, Alzheimer's disease, epilepsy, angioneurotic headache, and vascular dementia. Modern pharmacological studies have shown that the mechanisms of precious Tibetan medicine formulas in improving central nervous system diseases are that they promote microcirculation of brain tissue, regulate the permeability of the blood-brain barrier, alleviate inflammation, relieve oxidative stress damage, and inhibit nerve cell apoptosis. This review summarizes the clinical and pharmacological studies on precious Tibetan medicine formulas in prevention and treatment of central nervous system diseases, aiming to provide a reference for future in-depth research and innovative discovery of Tibetan medicine against central nervous diseases.
Assuntos
Doenças do Sistema Nervoso Central , Acidente Vascular Cerebral , Barreira Hematoencefálica , Encéfalo , Humanos , Medicina Tradicional Tibetana , Acidente Vascular Cerebral/tratamento farmacológicoRESUMO
This study aimed to investigate the effect of Tibetan medicine Ershiwuwei Songshi Pills(ESP) on the intestinal flora of non-alcoholic steatohepatitis(NASH) mice. Forty-eight male C57 BL/6 mice were randomly divided into the control group, model(methionine-choline-deficient, MCD) group, high-(0.8 g·kg~(-1)), medium-(0.4 g·kg~(-1)), and low-dose(0.2 g·kg~(-1)) ESP groups, and pioglitazone(PGZ, 10 mg·kg~(-1)) group, with eight mice in each group. Mice in the control group were fed with normal diet, while those in the remaining five groups with MCD diet for five weeks for inducing NASH. During modeling, they were gavaged with the corresponding drugs. The changes in body mass, daily water intake, and daily food intake were recorded. At the end of the experiment, the liver tissues were collected and stained with hematoxylin-eosin(HE) for observing the pathological changes, followed by oil red O staining for observing fat accumulation in the liver. The levels of serum aspartate aminotransferase(AST) and alanine aminotransferase(ALT) and triglyceride(TG) in liver tissue were measured. The changes in intestinal flora of mice were determined using 16 S rRNA high-throughput sequencing technology. The results showed that compared with the model group, the high-, medium-and low-dose ESP groups and the PGZ group exhibited significantly lowered AST and ALT in serum and TG in liver tissues and alleviated hepatocellular steatosis and fat accumulation in the liver. As demonstrated by 16 S rRNA sequencing, the abundance index and diversity of intestinal flora decreased in the model group, while those increased in the ESP groups. Besides, the Firmicutes to Bacteroidetes ratio decreased at the phylum level. In the alteration of the composition of intestinal flora, ESP reduced the abundance of Erysipelotrichia and Faecalibaculum but increased the abundance of Desulfovibrionaceae, Rikenellaceae, Lachnospiraceae, and Ruminococcaceae. This study has revealed that ESP has a protective effect against NASH induced by MCD diet, which may be related to its regulation of the changes in intestinal flora, alteration of the composition of intestinal flora, and inhibition of the intestinal dysbiosis.
Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Animais , Modelos Animais de Doenças , Fígado , Masculino , Medicina Tradicional Tibetana , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológicoRESUMO
The present study investigated the mechanism of the Tibetan medicine Ershiwuwei Songshi Pills(ESP) against the liver injury induced by acetaminophen(APAP) in mice based on the kelch-like ECH-associated protein 1(Keap1)/nuclear transcription factor E2 related factor 2(Nrf2) and Toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB) p65 signaling pathways. Kunming mice were randomly divided into a blank control group, a model group, an N-acetyl-L-cysteine(NAC) group, and high-(400 mg·kg~(-1)), medium-(200 mg·kg~(-1)), and low-dose(100 mg·kg~(-1)) ESP groups. After 14 days of continuous administration, except for those in the control group, the mice were intraperitoneally injected with 200 mg·kg~(-1) APAP. After 12 h, the serum and liver tissues of mice were collected. Hematoxylin-eosin(HE) staining was performed on pathological sections of the liver, and the levels of aspartate aminotransferase(AST) and alanine aminotransferase(ALT) in the serum and the levels of glutathione(GSH), malondialdehyde(MDA), superoxide dismutase(SOD), catalase(CAT), myeloperoxidase(MPO), and total antioxidant capacity(T-AOC) in liver tissue homogenate were detected to observe and analyze the protective effect of ESP on APAP-induced liver injury in mice. The serum levels of tumor necrosis factor-alpha(TNF-α), interleukin-1 beta(IL-1ß), and interleukin-6(IL-6) were determined by enzyme-linked immunosorbent assay(ELISA). The protein expression of Nrf2, Keap1, TLR4, and NF-κB p65 in the liver was determined by Western blot. Quantitative real-time was used to determine the mRNA expression of glutamate-cysteine ligase catalytic subunit(GCLC), glutamate-cysteine ligase regulatory subunit(GCLM), heme oxygenase-1(HO-1), and NAD(P)H dehydrogenase quinone 1(NQO-1) in the liver to explore the mechanism of ESP in improving APAP-induced liver damage in mice. As revealed by results, compared with the model group, the ESP groups showed improved liver pathological damage, decreased ALT and AST levels in the serum and MDA and MPO content in the liver, increased GSH, SOD, CAT, and T-AOC in the liver, reduced TNF-α and IL-6 levels in the serum, down-regulated expression of Keap1 in the liver cytoplasm and NF-κB p65 in the liver nucleus, up-regulated expression of Nrf2 in the liver nucleus, insignificant change in TLR4 expression, and elevated relative mRNA expression levels of antioxidant genes GCLC, GCLM, HO-1, and NQO-1. ESP can reduce the oxidative damage and inflammation caused by APAP, and the mechanism may be related to the Keap1/Nrf2 signaling pathway and the signal transduction factors on the TLR4/NF-κB p65 pathway.
Assuntos
Acetaminofen , Fator 2 Relacionado a NF-E2 , Acetaminofen/toxicidade , Animais , Antioxidantes/farmacologia , Glutamato-Cisteína Ligase/metabolismo , Glutamato-Cisteína Ligase/farmacologia , Glutationa , Interleucina-6/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fígado , Medicina Tradicional Tibetana , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais , Superóxido Dismutase/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismoRESUMO
The present study investigated the mechanism of the Tibetan patent medicine Ershiwuwei Shanhu Pills(ESP) in alleviating Alzheimer's disease in mice via Akt/mTOR/GSK-3ß signaling pathway. BALB/c mice were randomly assigned into a blank control group, a model group, low(200 mg·kg~(-1)), medium(400 mg·kg~(-1)) and high(800 mg·kg~(-1)) dose groups of ESP, and donepezil hydrochloride group. Except the blank control group, the other groups were given 20 mg·kg~(-1) aluminum chloride by gavage and 120 mg·kg~(-1) D-galactose by intraperitoneal injection for 56 days to establish Alzheimer's disease model. Morris water maze was used to detect the learning and memory ability of mice. The level of p-tau protein in mouse hippocampus and the levels of superoxide dismutase(SOD), malondialdehyde(MDA), catalase(CAT), and total antioxidant capacity(T-AOC) in hippocampus and serum were detected. Hematoxylin-eosin staining and Nissl staining were performed for the pathological observation of whole brain in mice. TdT-mediated dUTP nick-end labeling(TUNEL) staining was employed for the observation of apoptosis in mouse cortex. Western blot was adopted to detect the protein levels of p-mTOR, p-Akt, and GSK-3ß in the hippocampus. Compared with the model group, the ESP groups showcased alleviated pathological damage of the whole brain, decreased TUNEL positive cells, reduced level of p-tau protein in hippocampus, and risen SOD, CAT, and T-AOC levels and declined MDA level in hippocampus and serum. Furthermore, the ESP groups had up-regulated protein levels of p-mTOR and p-Akt while down-regulated protein level of GSK-3ß in hippocampus. Therefore, ESP can alleviate the learning and memory decline and oxidative damage in mice with Alzheimer's disease induced by D-galactose combined with aluminum chloride, which may be related to Akt/mTOR/GSK-3ß signaling pathway.
Assuntos
Doença de Alzheimer , Cloreto de Alumínio/efeitos adversos , Doença de Alzheimer/tratamento farmacológico , Animais , Galactose/efeitos adversos , Galactose/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipocampo/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Extratos Vegetais , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Superóxido Dismutase/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proteínas tauRESUMO
This study aims to investigate the mechanism of the Tibetan medicine Ershiwuwei Shanhu Pills(ESP) in improving scopolamine-induced learning and memory impairment in mice based on Keap1/Nrf2/HO-1 signaling pathway. ICR mice were randomized into blank group, model group, low-dose(200 mg·kg~(-1)), medium-dose(400 mg·kg~(-1)), and high-dose(800 mg·kg~(-1)) ESP groups, and donepezil hydrochloride group. The learning and memory impairment was induced in mice by intraperitoneal injection of scopola-mine. The learning and memory abilities of mice were detected by Morris water maze test, and the damage of hippocampal neurons and cortical neurons was detected based on Nissl staining. The expression of neuron specific nuclear protein(NeuN) in hippocampus and cortex of mice was determined by immunofluorescence assay, and the content of acetylcholine(Ach) and the activity of acetylcholines-terase(AchE) in hippocampus of mice by kits. Moreover, the content of superoxide dismutase(SOD), malondialdehyde(MDA), catalase(CAT), and total antioxidant capacity(T-AOC) in serum of mice was detected. The content of Kelch-like ECH-associated protein 1(Keap1), nuclear factor erythroid 2-related factor 2(Nrf2), and heme oxygenase 1(HO-1) in hippocampus was determined by Western blot. The results showed that there were significant differences in the trajectory map of mice among different groups in the behavioral experiment. Moreover, the latency of ESP groups decreased significantly compared with that in the model group. The hippocampal neurons in the high-dose ESP group were significantly more than those in the model group and the cortical neurons in the high-dose and medium-dose ESP groups were significantly more than those in the model group. The expression of NeuN in the model group was significantly decreased compared with that in the blank group, and the expression in the ESP groups was significantly higher than that in the model group. The AchE activity and MDA level were significantly decreased, and Ach content and levels of SOD, CAT, and T-AOC in the ESP groups were significantly increased in the ESP groups compared with those in the model group. The expression of Keap1 in the model group was significantly increased compared with that in the blank group, and the Keap1 expression increased insignificantly in ESP groups compared with that in the model group. The expression of Nrf2 and HO-1 was significantly lower in the model group than in the blank group, and the expression was significantly higher in the medium-dose ESP group than in the model group. In conclusion, ESP protected mice against the scopolamine-induced learning and memory impairment by regulating the Keap1/Nrf2/HO-1 signaling pathway.
Assuntos
Fator 2 Relacionado a NF-E2 , Escopolamina , Animais , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Medicina Tradicional Tibetana , Camundongos , Camundongos Endogâmicos ICR , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Extratos Vegetais , Escopolamina/efeitos adversos , Transdução de Sinais , Superóxido Dismutase/metabolismoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Ophiopogonis Radix, the commonly used traditional Chinese medicine in clinic for treating cardiovascular diseases, is returned to the stomach, lung and heart meridian. It is reported to nourish yin, moisten lung and is used to treat heart yin deficiency syndromes and asthenia of heart and lung, which indicated that Ophiopogonis Radix may have a protective effect on heart disorders. Atherosclerosisis is an important process in the development of cardiovascular diseases and abnormal lipid deposition induced macrophage foam cells is its crucial foundation. Our previous study showed the extract of Ophiopogonis Radix (EOR) ameliorates atherosclerosis in vitro. However, it may protect against cardiovascular diseases through inhibiting macrophage foam cell formation and its potential effective components and mechanisms are still unclear. AIM OF THE STUDY: Our study aimed to investigate the effect of Ophiopogonis Radix on macrophage foam cell formation and its potential active constituents and mechanisms. MATERIALS AND METHODS: Ox-LDL induced macrophage cells were employed to evaluate the effect of Ophiopogonis Radix on macrophage foam cell formation. Then the potential active constituents inhibited formation of macrophage foam cells were screened by biospecific cell extraction and its underlying mechanisms were also explored by Western blot. RESULTS: The extract of Ophiopogonis Radix was found to significantly inhibit macrophage foam cell formation, evidenced by the decrease of TG and TC and Oil Red O staining analysis in macrophage cells, which indicated that EOR reduced the formation of macrophage foam cells. At the same time, EOR was showed to increase antioxidant capacity in macrophage cells. After treatment with EOR, two potential active components interacted with macrophage foam cells specifically were identified to inhibit macrophage foam cell formation including methylophiopogonanone A and methylophiopogonanone B. Methylophiopogonanone A was then proved to decrease the expression of CD36, Lox-1 and SREBP2, increase the expression of ABCA1 obviously, while the expression of ABCG1 and SREBP1 had no changes. CONCLUSIONS: In our study, Ophiopogonis Radix was found to protect against atherosclerosis through suppressing ox-LDL induced macrophage foam cell formation and two potential compounds were identified by biospecific cell extraction including methylophiopogonanone A and methylophiopogonanone B. Moreover, methylophiopogonanone A was proved to inhibit foam cells through reducing uptake, synthesis and increasing efflux, which may provide guidance and reference for application of Ophiopogonis Radix and investigation of the effective components of TCMs.
Assuntos
Asparagaceae/química , Sobrevivência Celular/efeitos dos fármacos , Células Espumosas/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Fitoterapia , Raízes de Plantas/química , Animais , Masculino , Camundongos , Camundongos Endogâmicos ICR , Extratos Vegetais/química , Extratos Vegetais/farmacologiaRESUMO
Liver fibrosis is a pathological variation caused by almost all chronic liver injuries. As an edible and medicinal natural resource, Phyllanthus emblica (PE) has been reported to possess hepatoprotective, antioxidant, and anti-inflammatory activities and may have an ameliorating effect on hepatic fibrosis. To investigate the protective effect of the aqueous extract of PE (AEPE) against liver fibrosis and to uncover its related mechanisms, the chemical profile of AEPE was characterized by high performance liquid chromatography (HPLC) and sulfuric acid-phenol method. Ameliorative effects of different doses of AEPE were investigated in carbon-tetrachloride- (CCl4-) induced liver fibrosis rats by analyzing biochemical markers, morphologic pathology, and related proteins expression in liver tissue. The results indicated that AEPE (1.8, 3.6 g/kg) could significantly reduce levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), collagen IV (Col IV), type III precollagen (PCIII), hyaluronic acid (HA), laminin (LN), malondialdehyde (MDA), nitric oxide (NO), protein carbonyl (PC), tumor necrosis factor-α(TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and hydroxyproline (Hyp) and increase the levels of superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT). Hematoxylin-eosin (H&E), Sirius red, and Masson staining showed AEPE-treated improved fibrotic lesions and inflammatory cell infiltration. Meanwhile, AEPE treatment also significantly downregulates the expression of α-smooth muscle actin (α-SMA) and transforming growth factor-ß1 (TGF-ß1) in the liver tissue and serum, respectively. In conclusion, AEPE possesses curative efficacy against liver fibrosis through its antioxidant, anti-inflammatory, and antifibrotic effects.
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: In traditional Chinese medicine (TCM) and modern pharmacodynamics, dried Rehmannia Radix (DRR) possesses prominent anti-thrombotic activity that decreases after processing by nine steaming and drying cycles to develop processed Rehmannia Radix (PRR). Due to the complexity of the DRR components, the chemical mechanism leading to efficacy changes of DRR caused by processing is still unclear. AIM OF STUDY: This study aimed to trace the anti-thrombotic active compounds of DRR and different degrees of processed RR (PRR) and to evaluate the synergistic effects among different active components. MATERIALS AND METHODS: The anti-thrombotic active chemical fraction of DRR extracts was evaluated. Targeted fractions of the processed products of RR were prepared at different processing stages. The changes in monosaccharides, oligosaccharides and secondary metabolites during processing were characterized by multidimensional high-performance liquid chromatography (HPLC). The anti-thrombotic effects of targeted fractions of different RR samples were evaluated by analyzing the length of tail thrombus (LT) and serum biochemical indicators in carrageenan-induced tail-thrombus mice. The spectrum-effect relationships were investigated by partial least squares regression (PLSR) analysis and gray correlation analysis (GRA). Finally, the active compounds were screened by spectrum-effect relationship analysis and validated in vivo, and their synergistic effects were determined by Webb's fraction multiplication method. RESULTS: Six ingredients highly associated with anti-thrombotic activities were screened out by the spectrum-effect relationship analysis, of which oligosaccharides (stachyose, sucrose and raffinose) and iridoid glycosides (catalpol, leonuride and melitoside) possessed a synergistic effect on tumor necrosis factors (TNF-α), interleukin 1ß (IL-1ß) and plasminogen activator inhibitor 1 (PAI-1)/tissue-type plasminogen activator (t-PA) ratio in vivo with synergistic coefficient (SC) > 1. CONCLUSION: The main material basis of the anti-thrombotic activities of DRR is oligosaccharide components of stachyose, raffinose and sucrose, iridoid glycosides components of catalpol, leonuride and melittoside. The two kinds of components exert synergistic anti-thrombotic effects by inhibiting the expression of inflammatory factors and regulating the balance of the fibrinolysis system.
Assuntos
Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Fibrinolíticos/química , Fibrinolíticos/farmacologia , Rehmannia/química , Trombose/tratamento farmacológico , Animais , Cromatografia Líquida de Alta Pressão , Dessecação , Modelos Animais de Doenças , Sinergismo Farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Fibrinolíticos/uso terapêutico , Interleucina-1beta/sangue , Glicosídeos Iridoides/farmacologia , Masculino , Medicina Tradicional Chinesa , Camundongos Endogâmicos ICR , Monossacarídeos/análise , Análise Multivariada , Oligossacarídeos/análise , Oligossacarídeos/farmacologia , Inibidor 1 de Ativador de Plasminogênio/sangue , Análise de Componente Principal , Metabolismo Secundário , Vapor , Trombose/induzido quimicamente , Ativador de Plasminogênio Tecidual/sangue , Fator de Necrose Tumoral alfa/sangueRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Radix Scrophulariae (RS), is a renowned traditional Chinese medicine used as nourishing 'Yin'. The iridoid glycosides (IG) and phenylpropanoid glycosides (PG) are main chemical constituents in RS. However, there had been no pharmacological experiment studies of synergy between IG and PG. Due to the constituents interactions, exploring their synergy profile is of great important for explaining the essence of nourishing 'Yin' efficacy of RS. AIM OF STUDY: The present study was undertaken to evaluate synergistic nourishing 'Yin' effect of IG and PG from RS in vivo and in vitro through their immunoregulation and antioxidant activities. MATERIALS AND METHODS: In this study, IG and PG fractions in RS were isolated and identified by High Performance Liquid Chromatography coupled with tandem quadrupole time-of-flight Mass Spectrometry (HPLC-Q-TOF-MS). The synergistic nourishing 'Yin' effect of two fractions were investigated in vivo and in vitro with thyroxine-induced 'Yin' deficiency (YD) mice model and primary splenic lymphocyte, respectively. The exterior syndrome signs and serologic and cellular biomarkers changes were detected. Then, the synergistic coefficient (SC) of IG and PG on every pharmacodynamics index were calculated by Webb method. RESULTS: Compared with model and mono-therapy group (IG or PG group), IG combined with PG group significantly ameliorated YD by exerting immunoregulation and antioxidant effects. Based on the SC, IG and PG possessed a synergistic effect on heart rate, average speed, upright times, spleen index, LPO, SOD, IL-6, Na+-K+-ATP enzyme in vivo, and cAMP/cGMP, IFN-γ/IL-10, and MDA in vitro with SCâ¯>â¯1. CONCLUSIONS: The nourishing 'Yin' benefits were clearly produced when IG and PG were used in combination, which provided the scientific evidence of multiple-components and multiple-approach synergistic effect of Chinese traditional herbal medicine to control and management of diseases.
Assuntos
Glicosídeos/uso terapêutico , Scrophularia , Deficiência da Energia Yin/tratamento farmacológico , Animais , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Metabolismo Energético/efeitos dos fármacos , Feminino , Glicosídeos/farmacologia , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Camundongos Endogâmicos ICR , Estresse Oxidativo/efeitos dos fármacos , Raízes de Plantas , Baço/citologia , Tiroxina , Deficiência da Energia Yin/induzido quimicamenteRESUMO
Atherosclerosis is a chronic disease and an important pathological process associated with cardiovascular disease. Endothelial dysfunction, vascular smooth muscle cells (VSMCs) proliferation and neutrophil activation are involved in the development of atherosclerosis. Ophiopogonis Radix is a common traditional Chinese medicine use to treat cardiovascular diseases, however, its active constituents remain to be elucidated. In this study, primary vascular endothelial cells, primary VSMCs and neutrophils were prepared, and extract of Ophiopogonis Radix (EOR) was investigated to ameliorate H2O2 induced reactive oxygen species (ROS) and nitric oxide (NO) production. The results showed that EOR decreased levels of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1, its protective effects against oxidative damage of endothelia and endothelial dysfunction. Additionally, EOR treatment inhibited oxidized low-density lipoprotein-induced VSMC proliferation, phorbol-12-myristate-13-acetate-mediated ROS production and neutrophil activation, malondialdehyde production, and decreased superoxide dismutase activity and myeloperoxidase release. By HPLC-Q-TOF-MS/MS analysis, 51 compounds in EOR were identified including 22 saponins and 24 homoisoflavonoids. Then biospecific cell extraction and LC-MS technique were employed to screening the antiatherosclerosis active components in Ophiopogonis Radix. After co-cultured with EOR, the multi-effective active constituents including four saponins and two homoisoflavonoids were acquired and subsequently verified to restore properties including endothelial injury, VSMC proliferation and neutrophil activation, indicating that these compounds may be multi-effective active constituents that were responsible for atherosclerosis and the cardiovascular protection of Ophiopogonis Radix.
Assuntos
Antioxidantes , Medicamentos de Ervas Chinesas , Células Endoteliais , Ophiopogon , Animais , Antioxidantes/análise , Antioxidantes/química , Antioxidantes/farmacologia , Aterosclerose , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Fármacos Cardiovasculares/análise , Fármacos Cardiovasculares/química , Fármacos Cardiovasculares/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em TandemRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: In traditional Chinese medicine (TCM), Rehmanniae Radix (RR, derived from the root of Rehmannia glutinosa (Gaertn.) DC.) is commonly used as natural medicine for thousands of years, two types including the dried and rice-wine processed RR were used for different clinical purposes respectively, which were the typical case that pharmaceutical effect changed by processing in TCM. AIM OF STUDY: The goal of this study was to investigate the differences in the antithrombosis and hematopoietic effects of extracts of dried and processed RR (DRR and PRR) in vivo, and to explore the chemical basis underlying changes of medicinal properties caused by processing. MATERIALS AND METHODS: The aqueous extracts of DRR and PRR were prepared. Protective effect of varying doses of different extracts were investigated in type-I carrageenan induced mice tail thrombosis and cyclophosphamide induced myelosuppression model. The chemical composition of DRR and PRR extracts were determined by High Performance Liquid Chromatography coupled with tandem quadrupole time-of-flight Mass Spectrometry (HPLC/Q-TOF-MS). RESULTS: In antithrombosis activity tests, PRR possessed less ameliorated effects than DRR in the model mouse on body temperature, tail thrombus length and blood flow. Both DRR and PRR had no significant influence on prothrombin time (PT) and activated partial thromboplastin time (APTT), only high dose DRR could decrease the content of fibrinogen (FIB) in plasma. Histological examination of lung tissue suggested that thrombosis was significantly improved in DRR-H group. For myelosuppression model, only PRR could improve peripheral hemogram, both DRR and PRR had hematopoietic effects as demonstrated by their abilities to ameliorate the bone marrow nucleated cells (BMNC) and pathology of bone marrow tissue. The hematopoietic effects of PRR were significantly more potent than that of DRR at the concentration of 9â¯g/kg. By comparing the chemical composition, we found that iridoid glycosides were decreased and furfural derivatives increased in DRR after processing which may be the chemical mechanism contribute to the differences in efficacy. CONCLUSIONS: According to the results of this research, processing with rice wine for nine cycles significantly reduced antithrombotic effects and enhanced the hematopoietic effects of DRR as demonstrated in model mice. It can scientifically explain the different effect among two types of RR in clinical through the diverse method of processing and usage. Meanwhile, the predicted activity compounds from two types of RR can be potential candidates for the treatment of thrombosis and anemia.
Assuntos
Fibrinolíticos/farmacologia , Hematínicos/farmacologia , Extratos Vegetais/farmacologia , Rehmannia , Animais , Dessecação , Fibrinolíticos/química , Hematínicos/química , Hematopoese/efeitos dos fármacos , Masculino , Camundongos Endogâmicos ICR , Oryza , Extratos Vegetais/química , Raízes de Plantas/química , Rehmannia/química , Trombose/tratamento farmacológico , VinhoRESUMO
The goal of this research was to evaluate the anti-hepatitis B virus (HBV) activities of three compounds extracted and purified from Herpetospermum seeds (HS) on HepG2.2.15 cells. Herpetin (HPT), herpetone (HPO), and herpetfluorenone (HPF) were isolated from HS and identified using HR-ESI-MS and NMR. Different concentrations of the drugs were added to the HepG2.2.15 cells. Cell toxicity was observed with an MTT assay, cell culture supernatants were collected, and HBsAg and HBeAg were detected by ELISA. The content of HBV DNA was determined via quantitative polymerase chain reaction (PCR) with fluorescent probes. The 50% toxicity concentration (TC50) of HPF was 531.48 µg/mL, suggesting that this species is less toxic than HPT and HPO. HPT and HPF showed more potent antiviral activities than HPO. The 50% inhibition concentration (IC50) values of HPF on HBsAg and HBeAg were 176.99 and 134.53 µg/mL, respectively, and the corresponding therapeutic index (TI) values were 2.66 and 3.49, respectively. HPT and HPF were shown to significantly reduce the level of HBV DNA in the HepG2.2.15 culture medium compared to the negative control. This initial investigation of the anti-HBV constituents of HS yielded three compounds that revealed a synergistic effect of multiple components in the ethnopharmacological use of HS.