Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Eur Radiol Exp ; 8(1): 40, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38565836

RESUMO

BACKGROUND: To assess the feasibility and tissue response of using a gold nanoparticle (AuNP)-integrated silicone-covered self-expandable metal stent (SEMS) for local hyperthermia in a rat esophageal model. METHODS: The study involved 42 Sprague-Dawley rats. Initially, 6 animals were subjected to near-infrared (NIR) laser irradiation (power output from 0.2 to 2.4 W) to assess the in vitro heating characteristics of the AuNP-integrated SEMS immediately after its placement. The surface temperature of the stented esophagus was then measured using an infrared thermal camera before euthanizing the animals. Subsequently, the remaining 36 animals were randomly divided into 4 groups of 9 each. Groups A and B received AuNP-integrated SEMS, while groups C and D received conventional SEMS. On day 14, groups A and C underwent NIR laser irradiation at a power output of 1.6 W for 2 min. By days 15 (3 animals per group) or 28 (6 animals per group), all groups were euthanized for gross, histological, and immunohistochemical analysis. RESULTS: Under NIR laser irradiation, the surface temperature of the stented esophagus quickly increased to a steady-state level. The surface temperature of the stented esophagus increased proportionally with power outputs, being 47.3 ± 1.4 °C (mean ± standard deviation) at 1.6 W. Only group A attained full circumferential heating through all layers, from the epithelium to the muscularis propria, demonstrating marked apoptosis in these layers without noticeable necroptosis. CONCLUSIONS: Local hyperthermia using the AuNP-integrated silicone-covered SEMS was feasible and induced cell death through apoptosis in a rat esophageal model. RELEVANCE STATEMENT: A gold nanoparticle-integrated silicone-covered self-expanding metal stent has been developed to mediate local hyperthermia. This approach holds potential for irreversibly damaging cancer cells, improving the sensitivity of cancer cells to therapies, and triggering systemic anticancer immune responses. KEY POINTS: • A gold nanoparticle-integrated silicone-covered self-expanding metal stent was placed in the rat esophagus. • Upon near-infrared laser irradiation, this stent quickly increased the temperature of the stented esophagus. • Local hyperthermia using this stent was feasible and resulted in cell death through apoptosis.


Assuntos
Hipertermia Induzida , Nanopartículas Metálicas , Ratos , Animais , Ouro , Silicones , Estudos de Viabilidade , Ratos Sprague-Dawley , Esôfago , Stents
2.
ACS Appl Mater Interfaces ; 16(9): 11239-11250, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38395769

RESUMO

Hepatic cirrhosis has become a global public health concern with high mortality and currently lacks effective clinical treatment methods. Activation of hepatic stellate cells (HSCs) and the large number of macrophages infiltrating into the liver play a critical role in the development of liver cirrhosis. This study developed a novel modified nanoparticle system (SRF-CS-PSA NPs) in which Sorafenib (SRF) was encapsulated by palmitic acid-modified albumin (PSA) and further modified with chondroitin sulfate (CS). These modifications enabled the SRF-CS-PSA NPs to effectively target hepatic stellate cells (HSCs) and macrophages. SRF-CS-PSA NPs showed uniform particle size distribution of approximately 120 nm and high loading efficiency of up to 99.5% and can be taken up by HSCs and macrophages via CD44 and SR-A receptors, respectively. In a mouse model of liver cirrhosis, SRF-CS-PSA NPs demonstrated superior targeting and inhibition of HSCs and macrophages, effectively reversing the process of liver cirrhosis. Overall, our study demonstrates the potential of SRF-CS-PSA NPs as a targeted therapy for liver cirrhosis, with promising clinical applications.


Assuntos
Células Estreladas do Fígado , Nanopartículas , Camundongos , Animais , Cirrose Hepática/tratamento farmacológico , Fígado/patologia , Sorafenibe/uso terapêutico , Albuminas
3.
ACS Appl Bio Mater ; 7(2): 1229-1239, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38254256

RESUMO

Chronic pain emerges as a major global health issue, significantly impacting individuals' health and quality of life. In this study, we designed a bilayer microneedle loaded with lidocaine nanocomposites in the inner layer and adrenaline (Adr) in the outer layer (HCP MNs) for modulated sequential release to achieve prolonged local anesthesia. The obtained HCP MNs featured an intact structure with adequate mechanical strength for efficient skin penetration. The bilayer structure of MNs was evidenced by loading two fluorescent dyes in each layer. Furthermore, these HCP MNs were capable of inducing rapid as well as prolonged local anesthetic effects in guinea pigs. Hence, the bilayer MN coloaded with Adr and lidocaine nanocomposite serves as a promising transdermal delivery platform for chronic pain management.


Assuntos
Anestesia Local , Lidocaína , Humanos , Animais , Cobaias , Lidocaína/química , Epinefrina , Qualidade de Vida , Sistemas de Liberação de Medicamentos
4.
Heliyon ; 9(11): e21713, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027612

RESUMO

The concept of sepsis has recently evolved from one of a 'systemic inflammatory response syndrome caused by infection' to a 'severe, potentially fatal organic dysfunction caused by an inadequate or imbalanced host response to infection'. Organ dysfunction is closely related to sepsis. Multiple organ dysfunction syndrome (MODS) is the most serious outcome of sepsis, often leading to a poor prognosis. However, specific drugs for sepsis and MODS caused by sepsis remain undetermined, and the fatality rate is relatively high. Under the guidance of modern medicine, traditional Chinese medicine (TCM) has gained a wealth of experience in the prevention and treatment of sepsis and plays a key role via the effects of its numerous components, pathways and targets. This study used 'Sepsis', 'Organ dysfunction' and 'Traditional Chinese medicine' as strategies for searching the databases of Chinese National Knowledge Infrastructure, Wanfang, PubMed and The Web of Science. This paper presents an overview of the current status of TCM component formulations for preventing and treating sepsis with MODS to provide a theoretical basis for clinical treatment and drug development.

5.
Int J Nanomedicine ; 18: 5197-5211, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720597

RESUMO

Introduction: Silybin (SLB) as an effective hepatoprotective phytomedicine has been limited by its hydrophobicity, poor bioavailability and accumulation at lesion sites. Additionally, present drug loading methods are impeded by their low drug loading capacity, potential hazard of materials and poor therapeutic effects. Consequently, there is a pressing need to devise an innovative approach for preparing nanosuspensions loaded with both SLB and Silybin Meglumine salt (SLB-M), as well as to investigate the therapeutic effects of SLB nanosuspensions against hepatic fibrosis. Methods: The SLB nanosuspension (NS-SLB) was prepared and further modified with a hyaluronic acid-cholesterol conjugate (NS-SLB-HC) to improve the CD44 targeting proficiency of NS-SLB. To validate the accumulation of CD44 and ensure minimal cytotoxicity, cellular uptake and cytotoxicity assessments were carried out for the nanosuspensions. Western blotting was employed to evaluate the anti-hepatic fibrosis efficacy in LX-2 cells by inhibiting the secretion of collagen I. Hepatic fibrosis mouse models were used to further confirm the effectiveness of NS-SLB and NS-SLB-HC against hepatic fibrosis in vivo. Results: Uniform nanosuspensions were prepared through self-assembly, achieving high drug loading rates of 89.44% and 60.67%, respectively. Both SLB nanosuspensions showed minimal cytotoxicity in cellular environments and mitigated hepatic fibrosis in vitro. NS-SLB-HC was demonstrated to target activated hepatic stellate cells by receptor-ligand interaction between HA and CD44. They can reverse hepatic fibrosis in vivo by downregulating TGF-ß and inhibiting the secretion of α-SMA and collagen I. Conclusion: Designed as a medical excipient analogue, SLB-M was aimed to establish an innovative nanosuspension preparation method, characterized by high drug loading capacity and a notable impact against hepatic fibrosis.


Assuntos
Colágeno Tipo I , Cirrose Hepática , Animais , Camundongos , Silibina , Disponibilidade Biológica , Modelos Animais de Doenças , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Meglumina
6.
AMB Express ; 13(1): 93, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37665384

RESUMO

The biosynthetic process of selenium nanoparticles (SeNPs) by specific bacterial strain, whose growth directly affects the synthesis efficiency, has attracted great attentions. We previously reported that Bacillus paralicheniformis SR14, a SeNPs-producing bacteria, could improve intestinal antioxidative function in vitro. To further analyze the biological characteristics of SR14, whole genome sequencing was used to reveal the genetic characteristics in selenite reduction and sugar utilization. The results reviewed that the genome size of SR14 was 4,448,062 bp, with a GC content of 45.95%. A total of 4300 genes into 49 biological pathways was annotated to the KEGG database. EC: 1.1.1.49 (glucose-6-phosphate 1-dehydrogenase) and EC: 5.3.1.9 (glucose-6-phosphate isomerase), were found to play a potential role in glucose degradation and EC:2.7.1.4 (fructokinase) might be involved in the fructose metabolism. Growth profile and selenite-reducing ability of SR14 under different sugar supplements were determined and the results reviewed that glucose had a better promoting effect on the reduction of selenite and growth of bacteria than fructose, sucrose, and maltose. Moreover, RT-qPCR experiment proved that glucose supplement remarkably promoted the expressions of thioredoxin, fumarate reductase, and the glutathione peroxidase in SR14. Analysis of mRNA expression showed levels of glucose-6-phosphate dehydrogenase and fructokinase significantly upregulated under the supplement of glucose. Overall, our data demonstrated the genomic characteristics of SR14 and preliminarily determined that glucose supplement was most beneficial for strain growth and SeNPs synthesis.

7.
Front Pharmacol ; 14: 1210129, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547331

RESUMO

Berberine (BBR) has a long history of use in the treatment of Rheumatoid arthritis (RA) and is considered one of the most promising natural product for the treatment of RA. However, oral administration of berberine has low bioavailability and requires frequent administration, resulting in poor patient compliance. In this study, we developed a BBR-loaded phospholipid-based phase separation gel (BBR-PPSG) to achieve sustained drug release and long-term therapeutic effect. The stability of BBR-PPSG was verified and it was found that it can be stored for a long time. The pharmacokinetic study on rats and rabbits showed that BBR-PPSG not only achieved 1-month of sustained release, but also significantly increased the area under the curve (AUC) by nearly 9-fold and prolonged the half-life (t1/2) by 10-fold. By constructing rat and rabbit models of RA, we also proved that BBR-PPSG administration once a month effectively alleviated joint swelling, and significantly reduce TNF-α levels in AIA rats and OIA rabbits. Histopathological analysis of rabbit joint sections revealed that after intra-articular injection of BBR-PPSG, the synovial cell layer remained intact, while in the model group, the synovial cells were significantly reduced and exhibited necrosis. MicroCT data analysis showed that the values of Tb.N and Tb. Sp in the BBR-PPSG group were significantly better than those in the model group (p < 0.05). This study addressed the limitations of frequent administration of BBR by developing a phospholipid-based phase separation gel system for berberine delivery, achieving long-term sustained release. The BBR-PPSG demonstrated good biocompatibility, simple preparation and excellent stability, thus holding potential as a novel pharmaceutical formulation for RA treatment.

8.
ACS Appl Opt Mater ; 1(4): 825-831, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37152274

RESUMO

Optical materials based on unconventional plasmonic metals (e.g., magnesium) have lately driven rising research interest for the quest of possibilities in nanophotonic applications. Several favorable attributes of Mg, such as earth abundancy, lightweight, biocompatibility/biodegradability, and its active reactions with water or hydrogen, have underpinned its emergence as an alternative nanophotonic material. Here, we experimentally demonstrate a thin film-based optical device composed exclusively of earth-abundant and complementary metal-oxide semiconductor (CMOS)-compatible materials (i.e., Mg, a-Si, and SiO2). The devices can exhibit a spectrally selective and tunable near-unity resonant absorption with an ultrathin a-Si absorbing layer due to the strong interference effect in this high-index and lossy film. Alternatively, they can generate diverse reflective colors by appropriate tuning of the a-Si and SiO2 layer thicknesses, including all the primary colors for RGB (red, green, blue) and CMY (cyan, magenta, yellow) color spaces. In addition, the reflective hues of the devices can be notably altered in a zero power-consumption fashion by immersing them in water due to the resulted dissolution of the Mg back-reflection layer. These compelling features in combination with the lithography-free and scalable fabrication steps may promise their adoption in various photonic applications including solar energy harvesting, optical information security, optical modulation, and filtering as well as structure reuse and recycling.

9.
Sci Total Environ ; 882: 163558, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37075996

RESUMO

High-dose ZnO is widely used to prevent diarrhea and promote growth of weaning piglets, which has led to serious problems of animal toxicity, bacterial resistance and environmental pollution. In this study, a novel alternative ZnO (AZO) was prepared and its physicochemical properties were characterized. Animal experiments were further conducted to evaluate the effects of the ZnO forms, the dose of AZO and the combinations with AZO on the growth performance, diarrhea, zinc metabolism and gut barrier function of weaning piglets. The results showed that the AZO, compared with ordinary ZnO (OZO), nano ZnO (NZO) and porous ZnO (PZO), had the largest surface area and reduced the release of Zn2+ into the gastric fluid. AZO showed better antibacterial activity on Escherichia coli K88, Staphylococcus aureus and Salmonella enteritidis but lower cytotoxicity on porcine intestinal epithelial cells. Animal experiments suggested that low-dose AZO, NZO and PZO (300 mg/kg) improved growth performance and reduced diarrhea in weaning piglets as well as high-dose OZO (3000 mg/kg). Notably, low-dose AZO had the lowest diarrhea incidence. Additionally, low-dose AZO in combination with probiotics improved digestibility and digestive enzyme activities. Low-dose AZO in combination with probiotics also upregulated the expression of the intestinal zinc transporter proteins ZIP4 and DMT1, increased zinc bioavailability, reduced faecal zinc emissions, and avoided zinc overload in the liver and oxidative damage caused by high-dose ZnO. Moreover, low-dose AZO in combination with probiotics improved the gut barrier function of weaning piglets by promoting the expression of tight junction proteins, mucins and antimicrobial peptides and increasing gut microbiota diversity and beneficial Lactobacillus. This study proposed a novel strategy to replace high-dose ZnO and antibiotics with low-dose AZO and probiotics in weaning piglets, which effectively improved growth performance and prevented diarrhea while reducing animal toxicity, bacterial resistance, heavy metal residues and zinc emission pollution.


Assuntos
Óxido de Zinco , Zinco , Suínos , Animais , Zinco/toxicidade , Suplementos Nutricionais , Óxido de Zinco/química , Desmame , Diarreia/veterinária , Diarreia/microbiologia , Escherichia coli , Antibacterianos
10.
Artigo em Inglês | MEDLINE | ID: mdl-35845602

RESUMO

Objective: Endoplasmic reticulum (ER) stress leads to the accumulation of misfolded proteins and an active unfolded protein response (UPR). If the ER stress is not resolved, the UPR triggers activation of the apoptotic cell death program. It has been shown that ischemia/reperfusion (I/R) injury can induce apoptosis via the ER stress pathway. We previously found that Shen-Yuan-Dan capsule (SYDC), a widely used traditional Chinese medicine, reduces I/R injury. Here, we investigated whether SYDC protects against cardiomyocyte apoptosis by reducing ER stress during I/R injury and. if so, explored its mechanism of action. Methods: We use forty male Wistar rats to prepare the SYDC pharmacological serum. An I/R injury model was established using cultures of neonatal rat ventricular myocytes where cells were exposed to 2 h of reduced oxygenation followed by 4 h of normal oxygenation. After treatment of cultured cells with serum containing SYDC for 4 h, reverse transcription polymerase chain reaction and western blotting were performed to assess the expression levels of target molecules. Results: Ischemia/reperfusion (I/R) clearly decreased cell viability. Treatment of cells with SYDC in serum (5% and 10%) increased cell viability compared with control serum-treated I/R cardiomyocytes. The mRNA levels of glucose-regulated protein 78 (Grp78), C/EBP homologous protein (CHOP), and caspase-12 were significantly upregulated in the I/R group. The mRNA levels of Grp78, CHOP, and caspase-12 were significantly decreased in the 5% and 10% SYDC groups compared to the I/R group. The protein expression levels of Grp78, CHOP, and caspase-12 were significantly upregulated in the I/R group. Treatment of I/R cardiomyocytes with 5% or 10% SYDC reduced the expression levels of CHOP and caspase-12, while the control serum did not show this effect. Conclusions: These findings demonstrate that SYDC alleviates ER stress and prevents ER stress-induced apoptosis via the CHOP-dependent pathway.

11.
Small ; 18(1): e2105530, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34825482

RESUMO

Parenteral vaccines typically can prime systemic humoral immune response, but with limited effects on cellular and mucosal immunity. Here, a subcutis-to-intestine cascade for navigating nanovaccines to address this limitation is proposed. This five-step cascade includes lymph nodes targeting, uptaken by dendritic cells (DCs), cross-presentation of antigens, increasing CCR9 expression on DCs, and driving CD103+ DCs to mesenteric lymph nodes, in short, the LUCID cascade. Specifically, mesoporous silica nanoparticles are encapsulated with antigen and adjuvant toll-like receptor 9 agonist cytosine-phosphate-guanine oligodeoxynucleotides, and further coated by a lipid bilayer containing all-trans retinoic acid. The fabricated nanovaccines efficiently process the LUCID cascade to dramatically augment cellular and mucosal immune responses. Importantly, after being vaccinated with Salmonella enterica serovar Typhimurium antigen-loaded nanovaccine, the mice generate protective immunity against challenge of S. Typhimurium. These findings reveal the efficacy of nanovaccines mediated subcutis-to-intestine cascade in simultaneously activating cellular and mucosal immune responses against mucosal infections.


Assuntos
Nanopartículas , Vacinas , Animais , Antígenos , Células Dendríticas , Intestinos , Camundongos , Dióxido de Silício
12.
mSystems ; 6(4): e0078821, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34427509

RESUMO

The ability of Streptococcus mutans to survive and cause dental caries is dependent on its ability to metabolize various carbohydrates, accompanied by extracellular polysaccharide synthesis and biofilm formation. Here, the role of an rel competence-related regulator (RcrR) in the regulation of multiple sugar transportation and biofilm formation is reported. The deletion of the rcrR gene in S. mutans caused delayed growth, decreased biofilm formation ability, and affected the expression level of its multiple sugar transportation-related genes. Transcriptional profiling revealed 17 differentially expressed genes in the rcrR mutant. Five were downregulated and clustered with the sugar phosphotransferase (PTS) systems (mannitol- and trehalose-specific PTS systems). The conserved sites bound by the rcrR promoter were then determined by electrophoretic mobility shift assays (EMSAs) and DNase I footprinting assays. Furthermore, a potential binding motif in the promoters of the two PTS operons was predicted using MEME Suite 5.1.1. RcrR could bind to the promoter regions of the two operons in vitro, and the sugar transporter-related genes of the two operons were upregulated in an rcrR-overexpressing strain. In addition, when RcrR-binding sites were deleted, the growth rates and final yield of S. mutans were significantly decreased in tryptone-vitamin (TV) medium supplemented with different sugars, but not in absolute TV medium. These results revealed that RcrR acted as a transcription activator to regulate the two PTS systems, accompanied by multiple sugar transportation and biofilm formation. Collectively, these results indicate that RcrR is a critical transcription factor in S. mutans that regulates bacterial growth, biofilm formation, and multiple sugar transportation. IMPORTANCE The human oral cavity is a constantly changing environment. Tooth decay is a commonly prevalent chronic disease mainly caused by the cariogenic bacterium Streptococcus mutans. S. mutans is an oral pathogen that metabolizes various carbohydrates into extracellular polysaccharides (EPSs), biofilm, and tooth-destroying lactic acid. The host diet strongly influences the availability of multiple carbohydrates. Here, we showed that the RcrR transcription regulator plays a significant role in the regulation of biofilm formation and multiple sugar transportation. Further systematic evaluation of how RcrR regulates the transportation of various sugars and biofilm formation was also conducted. Notably, this study decrypts the physiological functions of RcrR as a potential target for the better prevention of dental caries.

13.
Mol Oral Microbiol ; 36(5): 278-290, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34351080

RESUMO

Zinc (Zn2+ ) is an essential divalent trace metal for living cells. Intracellular zinc homeostasis is critical to the survival and virulence of bacteria. Thus, the frequent fluctuations of salivary zinc, caused by the low physiological level and the frequent exogenous zinc introduction, present a serious challenge for bacteria colonizing the oral cavity. However, the regulation strategies to keep intracellular Zn2+ homeostasis in Streptococcus mutans, an important causative pathogen of dental caries, are unknown. Because zinc uptake is primarily mediated by an ATP-binding ABC transporter AdcABC in Streptococcus strains, we examined the function of AdcABC and transcription factor AdcR in S. mutans in this study. The results demonstrated that deletion of either adcA or adcCB gene impaired the growth but enhanced the extracellular polymeric matrix production in S. mutans, both of which could be relieved after excessive Zn2+ supplementation. Using RNA sequencing analysis, quantitative reverse transcription polymerase chain reaction examination, LacZ-reporter studies, and electrophoretic mobility shift assay, we showed that a MarR (multiple antibiotic resistance regulator) family transcription factor, AdcR, negatively regulates the expression of the genes adcR, adcC, adcB, and adcA by acting on the adcRCB and adcA promoters in response to Zn2+ concentration in their environmental niches. The deletion of adcR increases the sensitivity of S. mutans to excessive Zn2+ supply. Taken together, our findings suggest that Adc regulon, which consists of a Zn2+ uptake transporter AdcCBA and a Zn2+ -responsive repressor AdcR, plays a prominent role in the maintenance of intracellular zinc homeostasis of S. mutans.


Assuntos
Cárie Dentária , Regulon , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Homeostase , Humanos , Regulon/genética , Streptococcus mutans/genética , Streptococcus mutans/metabolismo , Zinco/metabolismo
14.
Cell Mol Immunol ; 18(10): 2422-2430, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-32917982

RESUMO

Vitamin K refers to a group of structurally similar vitamins that are essential for proper blood coagulation, as well as bone and cardiovascular health. Previous studies have indicated that vitamin K may also have anti-inflammatory properties, although the underlying mechanisms of its anti-inflammatory effects remain unclear. The NLRP3 inflammasome is a multiprotein complex, and its activation leads to IL-1ß and IL-18 secretion and contributes to the pathogenesis of various human inflammatory diseases. Here, we show that synthetic vitamins K3 and K4 are selective, potent inhibitors of the NLRP3 inflammasome and specifically block the interaction between NLRP3 and ASC, thereby inhibiting NLRP3 inflammasome assembly. Moreover, we show that treatment with vitamin K3 or K4 attenuates the severity of inflammation in a mouse model of peritonitis. Our results demonstrate that vitamins K3 and K4 exert their anti-inflammatory effects by inhibiting NLRP3 inflammasome activation and indicate that vitamin K supplementation may be a treatment option for NLRP3-associated inflammatory diseases.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Inflamação/tratamento farmacológico , Inflamação/patologia , Interleucina-1beta , Camundongos , Camundongos Endogâmicos C57BL , Vitamina K/farmacologia
15.
Colloids Surf B Biointerfaces ; 199: 111510, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33341438

RESUMO

Synergistic photochemical therapy with high performance and weak side effects is of great importance in hepatocellular carcinoma (HCC) treatment, therefore ingenious construct of nano-based therapy agents with accurate drug delivery and high photothermal conversion efficiency is of critical to the cancer therapy. Herein, an organic-inorganic hybrid nanomaterial (MGO@CD-CA-HA) has been constructed successfully by coating the ß-cyclodextrin-cholic acid-hyaluronic acid polymer (CD-CA-HA) onto the Fe3O4-graphene oxide (MGO). The MGO@CD-CA-HA revealed satisfactory multiple-targeted features including the cholic acid supplied hepatic-target, CD44-receptor target of hyaluronic acid and magnetic target of Fe3O4. Meanwhile, the hydrophobic antitumor drug camptothecin (CPT) was easily loaded by MGO@CD-CA-HA to form the MGO@CD-CA-HA/CPT nanocomposite, and the maximum theoretical adsorption capacity can reach 847.4 mg/g. Based on the facile photothermal response of MGO, the near-infrared radiation (808 nm) induced local hyperthermia was directly generated the apoptosis of tumor cells while triggered the release of CPT. Comparing with other kinds of cancer cells and normal hepatocyte cells, this PCT system provides a significant inhibitory effect for the liver cancer cells in vitro. Furthermore, the synergistic photochemical therapy presented the strong antitumor effect (the tumor inhibition rate > 90 %) in vivo. Thus, this study provided a promising multiple-targeted nanocarrier for chemo-photothermal combination therapy of liver cancer.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Hipertermia Induzida , Neoplasias Hepáticas , Preparações Farmacêuticas , beta-Ciclodextrinas , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Ácido Cólico , Doxorrubicina , Grafite , Humanos , Ácido Hialurônico , Neoplasias Hepáticas/tratamento farmacológico , Fototerapia , Polímeros
16.
Biomaterials ; 258: 120296, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32781326

RESUMO

Palmitic acid-modified bovine serum albumin (PAB) was synthetized and found to own remarkable scavenger receptor-A (SR-A) targeting ability in vitro and in vivo, through which activated macrophages took up PAB nanoparticles (PAB NPs) 9.10 times more than bovine serum albumin nanoparticles (BSA NPs) and PAB NPs could delivery anti-inflammatory drugs celastrol (CLT) to inflamed tissues more effectively than BSA NPs. Compared with chondroitin sulfate modified BSA NPs targeting activated macrophages via CD44, PAB NPs show a more prominent targeting effect whether in vivo or in vitro. And PAB also demonstrated excellent biosafety compared to maleylated BSA, a known SR-A ligand that was lethal in our study. Furthermore, in adjuvant-induced arthritis rats, CLT-PAB NPs significantly improved disease pathology at a lower CLT dose with high safety, compared with CLT-BSA NPs. In addition, compared with the existing ligands with SR-A targeting due to strong electronegativity, the enhanced electronegativity and introduced PA are both important for the SR-A targeting effect of PAB. Therefore, PAB provides a novel direction for the treatment of rheumatoid arthritis and design of new ligands of SR-A.


Assuntos
Artrite Reumatoide , Nanopartículas , Animais , Artrite Reumatoide/tratamento farmacológico , Portadores de Fármacos/uso terapêutico , Macrófagos , Ácido Palmítico , Ratos , Receptores Depuradores , Soroalbumina Bovina/uso terapêutico
17.
J Control Release ; 326: 120-130, 2020 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-32585230

RESUMO

Adjuvants that contain pathogen-associated molecular patterns (PAMPs) can enhance vaccination efficacy by binding to pattern recognition receptors (PRRs), thereby stimulating immune responses. Particularly effective may be the combination of multiple PAMPs that activate different PRRs, which occurs with natural pathogens. Here we hypothesized the enhanced effects would occur in two adjuvants that stimulate different PRRs: CpG oligodeoxynucleotide (CpG-ODN), which is Toll-like receptor 9 agonist; and 5'-triphosphate, short, double-stranded RNA (3pRNA), which activates retinoic acid-inducible gene I (RIG-I). The model antigen ovalbumin (OVA) was loaded and adjuvants were surface-adsorbed to aluminum hydroxide nanoparticles (hereafter NP-3pRNA-CpG) by electrostatic interaction with an average size of 120 nm and a negative surface charge for targeting lymph nodes. These nanoparticles were efficiently internalized by antigen-presenting cells (APCs) in the lymph nodes, and the resulting APC activation and antigen cross-presentation generated strong humoral immunity and cytotoxic T lymphocyte responses and IFN-γ secretion. NP-3pRNA-CpG significantly suppressed B16-OVA tumor growth and prolonged survival of tumor-bearing mice in therapeutic and prophylactic models, illustrating the enhanced effects of CpG-ODN and 3pRNA. Our study highlights the potential of combining multiple adjuvants for effective vaccine design.


Assuntos
Hidróxido de Alumínio , Nanopartículas , Adjuvantes Imunológicos , Animais , Antígenos , Camundongos , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos , Ovalbumina
18.
Arch Oral Biol ; 116: 104762, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32474211

RESUMO

OBJECTIVE: The present study aimed to evaluate the effect of Rhodiola rosea extract (RE) on Streptococcus mutans biofilm formation and the relevant mechanism of its action. METHODS: The effect of RE on the biofilm formation and extracellular polysaccharides (EPS) synthesis of S. mutans was assessed by confocal laser scanning microscopy (CLSM), crystal violet staining and CFU counting method. Scanning electron microscopy (SEM) was applied to observe the surface morphology of S. mutans biofilms formed on glass coverslips and dental enamel. To study the relevant mechanism, quantitative real time PCR (qRT-PCR) and zymogram assay were applied to measure the expression of virulence genes and the enzymatic activity of glucosyltransferases (Gtfs) under the treatment of RE. The CCK-8 assay was also performed on macrophages (RAWs) and human oral keratinocytes (HOKs) in order to evaluate its biocompatibility. RESULTS: As a result, RE inhibited the biofilm formation and EPS synthesis of S. mutans. RE also suppressed the expression of gtf genes and quorum sensing (QS) system as well as the enzymatic activity of Gtf proteins. Moreover, RE exhibited a good biocompatibility to human cells. CONCLUSIONS: This study provides the evidence for RE as a novel anti-biofilm agent for clinical use.


Assuntos
Biofilmes , Cárie Dentária , Rhodiola , Biofilmes/efeitos dos fármacos , Cárie Dentária/tratamento farmacológico , Cárie Dentária/prevenção & controle , Humanos , Extratos Vegetais/farmacologia , Streptococcus mutans/genética , Virulência
19.
J Ethnopharmacol ; 257: 112856, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32278760

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cedrus deodara (Roxb. ex D.Don) G. Don is applied as anti-inflammatory and anti-infection agents in folklore medicine. AIM OF THE STUDY: The present study aimed to assess the antimicrobial activity of Cedrus deodara (Roxb. ex D.Don) G. Don extract (CDE) against Streptococcus mutans biofilm formation and its biocompatibility, as well as to identify its chemical components. MATERIALS AND METHODS: Confocal laser scanning microscopy (CLSM), crystal violet staining, and CFU counting assay were applied to investigate the effect of CDE on S. mutans biofilm formation and extracellular polysaccharides (EPS) synthesis. The microstructure of S. mutans biofilms formed on glass coverslips and bovine enamel treated with CDE was observed by scanning electron microscopy (SEM). qRT-PCR was used to measure the expression of virulence genes gtfB, gtfC, and gtfD, and zymogram assay was performed to investigate the enzymatic activity of Gtfs. Moreover, HPLC-MS and NMR were applied to identify its chemical components. CCK-8 assay was also performed on human oral cells to evaluate its biocompatibility. RESULTS: Under the treatment of CDE, S. mutans formed less biofilm on both coverslips and enamel surfaces and synthesized less EPS. Moreover, CDE downregulated the expression of gtf genes and inhibited the enzymatic activity of Gtfs. According to HPLC-MS and NMR results, molecular structures of six main compounds in CDE were identified. CDE also has a good biocompatibility. CONCLUSIONS: CDE exhibits inhibitory activity against S. mutans and a good biocompatibility. It has the potential to be developed as anti-caries agents for clinical use.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Cedrus , Cárie Dentária/prevenção & controle , Extratos Vegetais/farmacologia , Streptococcus mutans/efeitos dos fármacos , Antibacterianos/isolamento & purificação , Antibacterianos/toxicidade , Biofilmes/crescimento & desenvolvimento , Cedrus/química , Cedrus/toxicidade , Células Cultivadas , Cárie Dentária/microbiologia , Regulação Bacteriana da Expressão Gênica , Glucosiltransferases/genética , Humanos , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/toxicidade , Streptococcus mutans/genética , Streptococcus mutans/crescimento & desenvolvimento , Streptococcus mutans/patogenicidade , Virulência/genética , Fatores de Virulência/genética
20.
J Ethnopharmacol ; 247: 112283, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31605736

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Bulbus Fritillaria cirrhosa D. Don (BFC) is a Chinese traditional herbal medicine that has long been used as an indispensable component in herbal prescriptions for bronchopulmonary diseases due to its well-established strong anti-inflammation and pulmonary harmonizing effects. Interestingly, there are few case reports in traditional Chinese medicine available where they found it to contribute in anti-tumor therapies. Imperialine is one of the most favored active substances extracted from BFC and has been widely recognized as an anti-inflammatory agent. AIM OF THE STUDY: The aim of the current work is to provide first-hand evidences both in vitro and in vivo showing that imperialine exerts anti-cancer effects against non-small cell lung cancer (NSCLC), and to explore the molecular mechanism of this anti-tumor activity. It is also necessary to examine its systemic toxicity, and to investigate how to develop strategies for feasible clinical translation of imperialine. MATERIALS AND METHODS: To investigate anti-NSCLC efficacy of imperialine using both in vitro and in vivo methods where A549 cell line were chosen as in vitro model NSCLC cells and A549 tumor-bearing mouse model was constructed for in vivo study. The detailed underlying anti-cancer mechanism has been systematically explored for the first time through a comprehensive set of molecular biology methods mainly including immunohistochemistry, western blot and enzyme-linked immunosorbent assays. The toxicity profile of imperialine treatments were evaluated using healthy nude mice by examining hemogram and histopathology. An imperialine-loaded liposomal drug delivery system was developed using thin film hydration method to evaluate target specific delivery. RESULTS: The results showed that imperialine could suppress both NSCLC tumor and associated inflammation through an inflammation-cancer feedback loop in which NF-κB activity was dramatically inhibited by imperialine. The NSCLC-targeting liposomal system was successfully developed for targeted drug delivery. The developed platform could favorably enhance imperialine cellular uptake and in vivo accumulation at tumor sites, thus improving overall anti-tumor effect. The toxicity assays revealed imperialine treatments did not significantly disturb blood cell counts in mice or exert any significant damage to the main organs. CONCLUSIONS: Imperialine exerts anti-cancer effects against NSCLC both in vitro and in vivo, and this previously unknown function is related to NF-κB centered inflammation-cancer feedback loop. Imperialine mediated anti-cancer activity is not through cytotoxicity and exhibit robust systemic safety. Furthermore, the liposome-based system we commenced would dramatically enhance therapeutic effects of imperialine while exhibiting extremely low side effects both on cellular and in NSCLC model. This work has identified imperialine as a promising novel anti-cancer compound and offered an efficient target-delivery solution that greatly facilitate practical use of imperialine.


Assuntos
Alcaloides/administração & dosagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cevanas/administração & dosagem , Medicamentos de Ervas Chinesas/administração & dosagem , Fritillaria/química , Neoplasias Pulmonares/tratamento farmacológico , Células A549 , Alcaloides/efeitos adversos , Alcaloides/química , Alcaloides/isolamento & purificação , Animais , Contagem de Células Sanguíneas , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Cevanas/efeitos adversos , Cevanas/química , Cevanas/isolamento & purificação , Medicamentos de Ervas Chinesas/efeitos adversos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/isolamento & purificação , Retroalimentação Fisiológica/efeitos dos fármacos , Humanos , Lipossomos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Masculino , Camundongos , NF-kappa B/antagonistas & inibidores , NF-kappa B/imunologia , Testes de Toxicidade , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA