Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Endocrinology ; 162(6)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33834205

RESUMO

The paraventricular nucleus of the hypothalamus (PVH) is a heterogeneous collection of neurons that play important roles in modulating feeding and energy expenditure. Abnormal development or ablation of the PVH results in hyperphagic obesity and defects in energy expenditure whereas selective activation of defined PVH neuronal populations can suppress feeding and may promote energy expenditure. Here, we characterize the contribution of calcitonin receptor-expressing PVH neurons (CalcRPVH) to energy balance control. We used Cre-dependent viral tools delivered stereotaxically to the PVH of CalcR2Acre mice to activate, silence, and trace CalcRPVH neurons and determine their contribution to body weight regulation. Immunohistochemistry of fluorescently-labeled CalcRPVH neurons demonstrates that CalcRPVH neurons are largely distinct from several PVH neuronal populations involved in energy homeostasis; these neurons project to regions of the hindbrain that are implicated in energy balance control, including the nucleus of the solitary tract and the parabrachial nucleus. Acute activation of CalcRPVH neurons suppresses feeding without appreciably augmenting energy expenditure, whereas their silencing leads to obesity that may be due in part due to loss of PVH melanocortin-4 receptor signaling. These data show that CalcRPVH neurons are an essential component of energy balance neurocircuitry and their function is important for body weight maintenance. A thorough understanding of the mechanisms by which CalcRPVH neurons modulate energy balance might identify novel therapeutic targets for the treatment and prevention of obesity.


Assuntos
Metabolismo Energético/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Receptores da Calcitonina/fisiologia , Animais , Ingestão de Alimentos/fisiologia , Metabolismo Energético/genética , Comportamento Alimentar/fisiologia , Homeostase/fisiologia , Hipotálamo/metabolismo , Hipotálamo/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/fisiologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Receptor Tipo 4 de Melanocortina/fisiologia , Receptores da Calcitonina/genética , Receptores da Calcitonina/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33827930

RESUMO

The ventromedial hypothalamus (VMH) is a critical neural node that senses blood glucose and promotes glucose utilization or mobilization during hypoglycemia. The VMH neurons that control these distinct physiologic processes are largely unknown. Here, we show that melanocortin 3 receptor (Mc3R)-expressing VMH neurons (VMHMC3R) sense glucose changes both directly and indirectly via altered excitatory input. We identify presynaptic nodes that potentially regulate VMHMC3R neuronal activity, including inputs from proopiomelanocortin (POMC)-producing neurons in the arcuate nucleus. We find that VMHMC3R neuron activation blunts, and their silencing enhances glucose excursion following a glucose load. Overall, these findings demonstrate that VMHMC3R neurons are a glucose-responsive hypothalamic subpopulation that promotes glucose disposal upon activation; this highlights a potential site for targeting dysregulated glycemia.


Assuntos
Glucose/metabolismo , Hiperglicemia/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Receptor Tipo 3 de Melanocortina/metabolismo , Animais , Hipotálamo/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Pró-Opiomelanocortina/metabolismo , Receptor Tipo 3 de Melanocortina/genética , Potenciais Sinápticos
3.
Nat Med ; 18(5): 820-3, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22522563

RESUMO

Few effective measures exist to combat the worldwide obesity epidemic(1), and the identification of potential therapeutic targets requires a deeper understanding of the mechanisms that control energy balance. Leptin, an adipocyte-derived hormone that signals the long-term status of bodily energy stores, acts through multiple types of leptin receptor long isoform (LepRb)-expressing neurons (called here LepRb neurons) in the brain to control feeding, energy expenditure and endocrine function(2-4). The modest contributions to energy balance that are attributable to leptin action in many LepRb populations(5-9) suggest that other previously unidentified hypothalamic LepRb neurons have key roles in energy balance. Here we examine the role of LepRb in neuronal nitric oxide synthase (NOS1)-expressing LebRb (LepRb(NOS1)) neurons that comprise approximately 20% of the total hypothalamic LepRb neurons. Nos1(cre)-mediated genetic ablation of LepRb (Lepr(Nos1KO)) in mice produces hyperphagic obesity, decreased energy expenditure and hyperglycemia approaching that seen in whole-body LepRb-null mice. In contrast, the endocrine functions in Lepr(Nos1KO) mice are only modestly affected by the genetic ablation of LepRb in these neurons. Thus, hypothalamic LepRb(NOS1) neurons are a key site of action of the leptin-mediated control of systemic energy balance.


Assuntos
Metabolismo Energético , Hipotálamo/fisiologia , Leptina/fisiologia , Neurônios/fisiologia , Óxido Nítrico Sintase Tipo I/fisiologia , Animais , Camundongos , Receptores para Leptina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA