Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemosphere ; 293: 133473, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34974039

RESUMO

Lignin from sugarcane bagasse was extracted using three different methods such as Alkaline, Ethanosolv, and Hydrotropic extraction and the effect of each method on yield and quality of bio-oil obtained when the lignin was depolymerized through solvothermal liquefaction was studied using ethanol as solvent. The maximum lignin yield was obtained in the hydrotropic extraction method when Sodium Xylene Sulfonate was used as the hydrotropic solvent at a concentration of 1.43 M and a temperature of 90 °C. Hydrothermal experiments were performed at temperature of 250 °C with a residence time of 30 min and lignin to ethanol ratio of 1:200 g/mL respectively. Among the methods used, the Ethanosolv lignin showed the highest extent of depolymerization (86.7%) to yield bio-oil at 250 °C with reduced biochar formation at lignin to solvent ratio of 1:200. Biochar obtained was used in adsorption studies of Cadmium (Cd), Lead (Pb), Nickel (Ni), and Zinc (Zn) and results showed that more than 85% removal of all the metals under lower concentration levels.


Assuntos
Lignina , Saccharum , Biocombustíveis , Biomassa , Celulose , Óleos de Plantas , Polifenóis , Água
2.
Sci Total Environ ; 778: 146262, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33714809

RESUMO

Environmental concerns due to fossil fuel usage has turned the research interest towards biomass and bioenergy field. Renewable biomass such as microalgae provides numerous advantages as they can grow in wastewater; sequester carbon dioxide, economical and eco-friendly. In this study, effect of pretreatment of microalgae (Scenedesmus obliquus) biomass using post-hydrothermal liquefaction wastewater (PHWW) for bio-oil production through hydrothermal liquefaction at a temperature of 300 °C was studied. Results showed liquefaction of pre-treated biomass yielded 48.53% bio-oil whereas 28.35% was resulted from biomass without pretreatment. The analysis of higher heating value of bio-oil showed that pretreated biomass oil has 36.19 MJ.Kg-1 against non-pretreated biomass oil, which has 28.88 MJ.Kg-1. Bio-oil (pretreated biomass) analysis revealed that 60% of compounds are in diesel and gasoline range with 58.09% of energy recovery. Bio-oil was rich in hydrocarbons of C7-C21 range with less oxygenated compounds. Carbon balance showed that an increase of 13% of carbon was sequestered in solid residue obtained from pretreated biomass and about 146% of increase also obtained in bio-oil.


Assuntos
Microalgas , Scenedesmus , Biocombustíveis , Biomassa , Carvão Vegetal , Óleos de Plantas , Polifenóis , Temperatura , Água
3.
Bioresour Technol ; 319: 124116, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32957046

RESUMO

The objective of this work was to study the hydrothermal liquefaction (HTL) of Prosopis juliflora biomass for the production of ferulic acid and bio-oil. Biomass was processed with various solvents (NaOH, KOH, HCl and H2SO4) to produce ferulic acid (FA). FA oxidation was carried out using the Nano ZnO catalyst to produce an optimum vanillin yield of 0.3 g at 70 °C with 0.4% catalyst loading for a time of 60 min. The spent solid residue was then processed using HTL at 5 MPa pressure and a temperature range of 240-340 °C. Various biomass loading (2.5 g to 12.5 g) was taken for a fixed water content of 200 mL. Bio-oil optimum yield was 22.5 wt% for 10 g/200 mL of biomass loading ratio. The optimum temperature was 300 °C for a processing time of 1 h. The catalyst showed the reusable capability of two three consecutive cycles.


Assuntos
Prosopis , Biocombustíveis , Biomassa , Ácidos Cumáricos , Óleos de Plantas , Polifenóis , Temperatura , Água
4.
Bioresour Technol ; 283: 36-44, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30901586

RESUMO

In this study Scenedesmus abundans was used as a biosorbent material for removing hydrocarbons from simulated petroleum wastewater. Batch experiments resulted in the removal of 92.16% of hydrocarbons from simulated wastewater within 60 min. The spent biosorbent was converted to bio-oil through hydrothermal liquefaction process (HTL) at temperature range from 220 to 320 °C with 1 h holding time. Liquid hydrocarbons (bio-oil) yield was 43.4 wt% at 300 °C with 15 g of spent sorbent loading and possessed HHV of 39.10 MJ/Kg. Additionally the HTL wastewater (aqueous phase) was recycled as reaction medium and studied for its effects on bio-oil yield which increased till second cycle (47.91 wt%). HTL bio-char was employed as adsorbent to remove heavy metals from wastewater. It showed greater removal efficiency of 86.5% to Ni(II) ions. From the results it was concluded that the petroleum residues can be effectively recycled back into liquid hydrocarbons with simple waste management pathway.


Assuntos
Biomassa , Petróleo/metabolismo , Scenedesmus/metabolismo , Águas Residuárias/química , Óleos de Plantas/metabolismo , Polifenóis/metabolismo , Reciclagem
5.
Bioresour Technol ; 274: 296-301, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30529335

RESUMO

In this study, co-liquefaction (HTL) of Prosopis juliflora (PJ) biomass with polyolefin waste (PO) was performed to produce bio-oil. HTL on bio-oil yield was studied at varying PJ to PO ratios (0:1, 1:0, 1:1, 2:1, 3:1, 4:1 and 5:1) and temperatures from 340 to 440 °C. Bio-oil and HTL by-products were characterized by Mass Spectroscopy (GC-MS) and Fourier Transform Infrared Spectroscopy (FTIR) analysis. Bio-oil yield was around 61.23%wt at 420 °C for 3:1 blends with 3 wt% of HCl activated bentonite catalyst at 60 min holding time. HHV value was 46 MJ/Kg with 88.23% purity (petro-diesel). Additionally gas possessed 26.28% of Hydrogen gas, 45.59% of Carbon dioxide gas, 7.1% of Carbon monoxide gas, 8.12% of Methane gas and other elements. The energy recovery (78%) and carbon recovery (94%) was higher for 3:1 blends bio-oil than PO and PJ processed bio-oils. HTL wastewater possessed higher degree of reusability nature as HTL medium.


Assuntos
Polienos/metabolismo , Prosopis/metabolismo , Biocombustíveis , Biomassa , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos/metabolismo , Eliminação de Resíduos de Serviços de Saúde , Óleos de Plantas , Polifenóis/biossíntese , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
6.
Bioresour Technol ; 261: 182-187, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29660659

RESUMO

In this study, bio-oil was produced through hydrothermal liquefaction (HTL) of C. vulgaris biomass cultivated in wastewater and was enriched into transportation fuels. Bio-oil yield was 29.37% wt at 300 °C, 60 min, at 15 g/200 mL biomass loading rate with 3% wt nano ZnO catalyst loading. Applying catalyst reduced oxygen and nitrogen content in bio-oil and increased its calorific value (19.6 ±â€¯0.8 MJ/Kg). Bio-oil was enriched through liquid-liquid extraction (LLE) and higher yield was obtained at 30 °C for dichloromethane solvent (18.2% wt). Compounds of enriched oil were within the petro-diesel range (C8-C21). Bio-char after HTL process was activated and used as adsorbent in wastewater treatment process to remove organic pollutants (COD, NO3, NH3 and PO4). Treated wastewater can be supplied as growth medium for microalgae cultivation in further experiments. Nearly 3-4 times the nanocatalyst can be reused in the HTL process.


Assuntos
Óleos de Plantas , Polifenóis , Águas Residuárias , Biocombustíveis , Biomassa , Microalgas , Temperatura , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA