Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Complement Integr Med ; 20(2): 404-412, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36017665

RESUMO

OBJECTIVES: A polyherbal formulation with hepatoprotective and choleretic properties combining pharmacological potential of eight medicinal plants was developed in Nargiz Medical center (Republic of Azerbaijan) for the use as herbal tea. To explore the effect of polyherbal composition on the metabolism of LPS-stimulated macrophages in vitro. METHODS: The qualitative and quantitative phytochemical analysis was conducted using specific color reactions and gas chromatography-mass spectrometry (GC-MS). Nitric oxide (NO) assay was determined using the Griess reaction. Reactive oxygen species (ROS) generation was measured using ROS-sensitive fluorescence indicator, H2DCFDA, by flow cytometry. Arginase activity was examined by colorimetric method. RESULTS: The studied polyherbal formulation exerted anti-inflammatory activity in LPS-stimulated macrophages which was evidenced by dose-dependent decrease of ROS generation and by shift of arginine metabolism to the increase of arginase activity and decrease of NO release. CONCLUSIONS: Our findings suggest that the herbal tea reduces macrophage inflammatory activity, that provide an important rationale to utilize it for the attenuation of chronic inflammation typical of hepatobiliary disorders.


Assuntos
Lipopolissacarídeos , Chás de Ervas , Camundongos , Animais , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Colagogos e Coleréticos/metabolismo , Colagogos e Coleréticos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Arginase/metabolismo , Macrófagos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo
2.
Alzheimers Res Ther ; 14(1): 84, 2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35717405

RESUMO

BACKGROUND: Low-intensity light can decelerate neurodegenerative disease progression and reduce amyloid ß (Aß) levels in the cortex, though the cellular and molecular mechanisms by which photobiomodulation (PBM) protects against neurodegeneration are still in the early stages. Microglia cells play a key role in the pathology of Alzheimer's disease by causing chronic inflammation. We present new results concerning the PBM of both oxidative stress and microglia metabolism associated with the activation of metabolic processes by 808 nm near-infrared light. METHODS: The studies were carried out using healthy male mice to obtain the microglial cell suspension from the hippocampus. Oligomeric ß-amyloid (1-42) was prepared and used to treat microglia cells. Light irradiation of cells was performed using diode lasers emitting at 808 nm (30 mW/cm2 for 5 min, resulting in a dose of 10 J/cm2). Mitochondrial membrane potential, ROS level studies, cell viability, apoptosis, and necrosis assays were performed using epifluorescence microscopy. Phagocytosis, nitric oxide and H2O2 production, arginase, and glucose 6-phosphate dehydrogenase activities were measured using standard assays. Cytokines, glucose, lactate, and ATP were measurements with ELISA. As our data were normally distributed, two-way ANOVA test was used. RESULTS: The light induces a metabolic shift from glycolysis to mitochondrial activity in pro-inflammatory microglia affected by oligomeric Aß. Thereby, the level of anti-inflammatory microglia increases. This process is accompanied by a decrease in pro-inflammatory cytokines and an activation of phagocytosis. Light exposure decreases the Aß-induced activity of glucose-6-phosphate dehydrogenase, an enzyme that regulates the rate of the pentose phosphate pathway, which activates nicotinamide adenine dinucleotide phosphate oxidases to further produce ROS. During co-cultivation of neurons with microglia, light prevents the death of neurons, which is caused by ROS produced by Aß-altered microglia. CONCLUSIONS: These original data clarify reasons for how PBM protects against neurodegeneration and support the use of light for therapeutic research in the treatment of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Citocinas/metabolismo , Glucose/metabolismo , Humanos , Peróxido de Hidrogênio , Masculino , Camundongos , Microglia/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Fototerapia , Espécies Reativas de Oxigênio/metabolismo
3.
J Photochem Photobiol B ; 227: 112388, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35074677

RESUMO

Irradiation with red or near-infrared (NIR) light in low level light therapy (LLLT) is found to stimulate cellular processes and bioenergetics, resulting in enhanced wound healing, pain control, neurodegenerative diseases treatment, etc. During light irradiation of tissues and organs, different cells are affected, though the connection between photostimulation of cells and their environmental conditions remains poorly understood. In this report, red/NIR light-stimulated angiogenesis is investigated using endothelial cells in vitro, with a focus on the capillary-like structure (CLS) formation and the respective biochemical processes in cells under conditions proximate to a healthy or malignant environment, which strongly defines angiogenesis. To model environmental conditions for endotheliocytes in vitro, the cell culture environment was supplemented by an augmented conditioned medium from macrophages or cancer cells. The biochemical processes in endothelial cell cultures were investigated with and without irradiation by red (650 nm) and near-infrared (808 nm) laser diodes and under normoxia or hypoxia conditions. A light-stimulated angiogenesis has been found, with a more efficient stimulation by 650 nm light compared to 808 nm light. It was shown that the irradiation with light promoted extracellular Ca2+ influx, fostered cell cycle progression, proliferation and NO generation in endothelial cells, and caused an increase in vascular endothelial growth factor (VEGF) production by endothelial cells and M2 macrophages under hypoxia conditions. The activation of VEGF production by macrophages was found to be associated with an increase in the number of M2 macrophages after light irradiation under hypoxia conditions. Thus, a new pathway of an activation of the endothelial cell metabolism, which is related with the extracellular Ca2+ influx after light irradiation, has been revealed. STATEMENT OF SIGNIFICANCE: Red/NIR light-stimulated angiogenesis has been studied using endothelial cells in vitro, with focus on CLS formation and the respective biochemical processes in cell models proximate to a healthy or malignant environment. A light-stimulated angiogenesis has been found, stimulated via extracellular Ca2+ influx, cell cycle progression, proliferation and NO generation, VEGF production increase by endothelial cells under hypoxia conditions.


Assuntos
Células Endoteliais , Fator A de Crescimento do Endotélio Vascular , Células Cultivadas , Células Endoteliais/metabolismo , Humanos , Raios Infravermelhos , Macrófagos/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA