Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Insect Biochem Mol Biol ; 81: 1-9, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27986638

RESUMO

Transferrins are secreted proteins that bind iron. The well-studied transferrins are mammalian serum transferrin, which is involved in iron transport, and mammalian lactoferrin, which functions as an immune protein. Lactoferrin and lactoferrin-derived peptides have bactericidal activity, and the iron-free form of lactoferrin has bacteriostatic activity due to its ability to sequester iron. Insect transferrin is similar in sequence to both serum transferrin and lactoferrin, and its functions are not well-characterized; however, many studies of insect transferrin indicate that it has some type of immune function. The goal of this study was to determine the specific immune functions of transferrin from Manduca sexta (tobacco hornworm). We verified that transferrin expression is upregulated in response to infection in M. sexta larvae and determined that the concentration of transferrin in hemolymph increases from 2 µM to 10 µM following an immune challenge. It is also present in molting fluid and prepupal midgut fluid, two extracellular fluids with immune capabilities. No immune-induced proteolytic cleavage of transferrin in hemolymph was observed; therefore, M. sexta transferrin does not appear to be a source of antimicrobial peptides. Unlike iron-saturated lactoferrin, iron-saturated transferrin had no detectable antibacterial activity. In contrast, 1 µM iron-free transferrin inhibited bacterial growth, and this inhibition was blocked by supplementing the culture medium with 1 µM iron. Our results suggest that M. sexta transferrin does not have bactericidal activity, but that it does have a bacteriostatic function that depends on its iron sequestering ability. This study supports the hypothesis that insect transferrin participates in an iron withholding strategy to protect insects from infectious bacteria.


Assuntos
Manduca/imunologia , Transferrina/fisiologia , Animais , Líquido Extracelular/metabolismo , Ferro/metabolismo , Testes de Sensibilidade Microbiana , Transferrina/química , Transferrina/isolamento & purificação
2.
Insect Biochem Mol Biol ; 40(3): 267-73, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20080183

RESUMO

Newly synthesized insect cuticle is soft and pale but becomes stronger (sclerotized) and often darker (pigmented) over several hours or days. The first step in the sclerotization and pigmentation pathways is the hydroxylation of tyrosine to produce 3,4-dihydroxyphenylalanine (DOPA). Tyrosine hydroxylase (TH) is known to catalyze this reaction during pigmentation, but a role for TH in sclerotization has not been documented. The goal of this study was to determine whether TH is required for cuticle sclerotization in the red flour beetle, Tribolium castaneum. We used quantitative RT-PCR to verify that TH expression occurs at the time of cuticle tanning and immunohistochemistry to confirm that TH is expressed in the epithelial cells underlying sclerotized cuticle. In addition, we found that a reduction in TH function (mediated by RNA interference) resulted in a decrease in cuticle pigmentation and a decrease in the hardness of both pigmented and colorless cuticle. These results demonstrate a requirement for TH in sclerotization as well as brown pigmentation of insect cuticle.


Assuntos
Proteínas de Insetos/metabolismo , Pigmentação , Tribolium/enzimologia , Tirosina 3-Mono-Oxigenase/metabolismo , Sequência de Aminoácidos , Animais , DNA Complementar , Proteínas de Insetos/genética , Dados de Sequência Molecular , Fenótipo , Interferência de RNA , Tribolium/genética , Tirosina 3-Mono-Oxigenase/genética
3.
Insect Biochem Mol Biol ; 37(12): 1327-37, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17967351

RESUMO

In insects, 3,4-dihydroxyphenylalanine (DOPA) is required for tanning of newly formed cuticle and the production of melanin during some types of immune responses. DOPA is produced by the hydroxylation of tyrosine, and this reaction can be catalyzed by two types of enzymes: tyrosine hydroxylase (TH) and phenoloxidase (PO). TH is required for cuticle tanning in Drosophila melanogaster and for cuticle pigmentation in other insect species, but additional functions of TH have been uncertain. In contrast, an immune function for PO has been well documented. The goal of this study was to characterize TH from Manduca sexta with a focus on its possible contribution to cuticle tanning and immune-associated melanization. We cloned a full-length TH cDNA, purified recombinant TH, and confirmed that MsTH and MsPO have tyrosine hydroxylating activity. To determine possible functions, we analyzed TH expression profiles. TH mRNA and protein were present in eggs at the stage when the pharate larval cuticle begins to tan and also in the integument of molting larvae. The amount of TH in the integument was correlated with the degree of cuticle tanning. Unlike PO, which was found to be constitutively expressed by hemocytes and was present in plasma, TH was upregulated in hemocytes and the fat body in response to an immune challenge and remained intracellular. These data suggest that TH is required for cuticle tanning and immunity in M. sexta. Based on the collective information from many studies, we propose a model in which TH is a major producer of the DOPA required for both cuticle tanning and immune-associated melanization.


Assuntos
Di-Hidroxifenilalanina/biossíntese , Manduca/enzimologia , Melaninas/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Sequência de Aminoácidos , Animais , DNA Complementar , Expressão Gênica , Manduca/genética , Manduca/imunologia , Dados de Sequência Molecular , Monofenol Mono-Oxigenase/isolamento & purificação , Monofenol Mono-Oxigenase/metabolismo , Proteínas Recombinantes/isolamento & purificação , Análise de Sequência de DNA , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/isolamento & purificação
4.
Insect Biochem Mol Biol ; 34(1): 29-41, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14723895

RESUMO

Laccase (EC 1.10.3.2) is an enzyme with p-diphenol oxidase activity that is a member of a group of proteins collectively known as multicopper, or blue copper, oxidases. Laccase is hypothesized to play an important role in insect cuticle sclerotization by oxidizing catechols in the cuticle to their corresponding quinones, which then catalyze protein cross-linking reactions. To facilitate studies of the structure, function and regulation of insect laccases, we have cloned two cDNAs for laccases from the tobacco hornworm, Manduca sexta (MsLac1 and 2), and one from the malaria mosquito, Anopheles gambiae (AgLac1). The MsLac1 and 2 cDNAs encode proteins of 801 amino acids (aa) and 760 aa, respectively, while the AgLac1 cDNA encodes a protein of 1009 aa. All three cDNAs contain putative secretion signal sequences, and the 10 histidines and one cysteine that form the copper-binding centers, as well as a methionine in the T1 copper center. Novel to the insect laccases, relative to both fungal and plant laccases, is a longer amino-terminal sequence characterized by a unique domain consisting of several conserved cysteine, aromatic, and charged residues. Northern blot analyses identified single transcripts of approximately 3.6, 3.5, and 4.4 kb for MsLac1, MsLac2, and AgLac1, respectively, and also showed that AgLac1 was expressed in all life stages of the mosquito. RT-PCR revealed that the MsLac1 transcript was most abundant in the midgut, Malpighian tubules, and epidermis, whereas the MsLac2 transcript was most abundant in the epidermis. MsLac2 showed strong expression in the pharate pupal and reduced expression in the early pupal epidermis, consistent with the laccases' presumed role in cuticle sclerotization.


Assuntos
Anopheles/enzimologia , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , DNA Complementar/genética , Lacase/biossíntese , Lacase/genética , Manduca/enzimologia , Sequência de Aminoácidos , Animais , Anopheles/genética , Anopheles/crescimento & desenvolvimento , Proteínas de Transporte/química , Clonagem Molecular , Epiderme/enzimologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Lacase/química , Larva/enzimologia , Masculino , Manduca/genética , Manduca/crescimento & desenvolvimento , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , Pupa/enzimologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA