Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Lipid Res ; 64(9): 100361, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36958721

RESUMO

N-acyl taurines (NATs) are bioactive lipids with emerging roles in glucose homeostasis and lipid metabolism. The acyl chains of hepatic and biliary NATs are enriched in polyunsaturated fatty acids (PUFAs). Dietary supplementation with a class of PUFAs, the omega-3 fatty acids, increases their cognate NATs in mice and humans. However, the synthesis pathway of the PUFA-containing NATs remains undiscovered. Here, we report that human livers synthesize NATs and that the acyl-chain preference is similar in murine liver homogenates. In the mouse, we found that hepatic NAT synthase activity localizes to the peroxisome and depends upon an active-site cysteine. Using unbiased metabolomics and proteomics, we identified bile acid-CoA:amino acid N-acyltransferase (BAAT) as the likely hepatic NAT synthase in vitro. Subsequently, we confirmed that BAAT knockout livers lack up to 90% of NAT synthase activity and that biliary PUFA-containing NATs are significantly reduced compared with wildtype. In conclusion, we identified the in vivo PUFA-NAT synthase in the murine liver and expanded the known substrates of the bile acid-conjugating enzyme, BAAT, beyond classic bile acids to the synthesis of a novel class of bioactive lipids.


Assuntos
Ácidos e Sais Biliares , Ácidos Graxos Ômega-3 , Camundongos , Humanos , Animais , Ácidos e Sais Biliares/metabolismo , Taurina/metabolismo , Fígado/metabolismo , Ácidos Graxos Insaturados/metabolismo , Aciltransferases/metabolismo , Aminoácidos/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Ômega-3/metabolismo
2.
Protein Sci ; 31(7): e4364, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35762724

RESUMO

Copper (Cu) is one of the most abundant trace metals in all organisms, involved in a plethora of cellular processes. Yet elevated concentrations of the element are harmful, and interestingly prokaryotes are more sensitive for environmental Cu stress than humans. Various transport systems are present to maintain intracellular Cu homeostasis, including the prokaryotic plasmid-encoded multiprotein pco operon, which is generally assigned as a defense mechanism against elevated Cu concentrations. Here we structurally and functionally characterize the outer membrane component of the Pco system, PcoB, recovering a 2.0 Å structure, revealing a classical ß-barrel architecture. Unexpectedly, we identify a large opening on the extracellular side, linked to a considerably electronegative funnel that becomes narrower towards the periplasm, defining an ion-conducting pathway as also supported by metal binding quantification via inductively coupled plasma mass spectrometry and molecular dynamics (MD) simulations. However, the structure is partially obstructed towards the periplasmic side, and yet flux is permitted in the presence of a Cu gradient as shown by functional characterization in vitro. Complementary in vivo experiments demonstrate that isolated PcoB confers increased sensitivity towards Cu. Aggregated, our findings indicate that PcoB serves to permit Cu import. Thus, it is possible the Pco system physiologically accumulates Cu in the periplasm as a part of an unorthodox defense mechanism against metal stress. These results point to a previously unrecognized principle of maintaining Cu homeostasis and may as such also assist in the understanding and in efforts towards combatting bacterial infections of Pco-harboring pathogens.


Assuntos
Cobre , Proteínas de Membrana , Transporte Biológico , Cobre/metabolismo , Homeostase , Humanos , Proteínas de Membrana/metabolismo , Periplasma/metabolismo
3.
Elife ; 102021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34951590

RESUMO

Transition metals, such as zinc, are essential micronutrients in all organisms, but also highly toxic in excessive amounts. Heavy-metal transporting P-type (PIB) ATPases are crucial for homeostasis, conferring cellular detoxification and redistribution through transport of these ions across cellular membranes. No structural information is available for the PIB-4-ATPases, the subclass with the broadest cargo scope, and hence even their topology remains elusive. Here, we present structures and complementary functional analyses of an archetypal PIB-4-ATPase, sCoaT from Sulfitobacter sp. NAS14-1. The data disclose the architecture, devoid of classical so-called heavy-metal-binding domains (HMBDs), and provide fundamentally new insights into the mechanism and diversity of heavy-metal transporters. We reveal several novel P-type ATPase features, including a dual role in heavy-metal release and as an internal counter ion of an invariant histidine. We also establish that the turnover of PIB-ATPases is potassium independent, contrasting to many other P-type ATPases. Combined with new inhibitory compounds, our results open up for efforts in for example drug discovery, since PIB-4-ATPases function as virulence factors in many pathogens.


Heavy metals such as zinc and cobalt are toxic at high levels, yet most organisms need tiny amounts for their cells to work properly. As a result, proteins studded through the cell membrane act as gatekeepers to finetune import and export. These proteins are central to health and disease; their defect can lead to fatal illnesses in humans, and they also help bacteria infect other organisms. Despite their importance, little is known about some of these metal-export proteins. This is particularly the case for PIB-4-ATPases, a subclass found in plants and bacteria and which includes, for example, a metal transporter required for bacteria to cause tuberculosis. Intricate knowledge of the three-dimensional structure of these proteins would help to understand how they select metals, shuttle the compounds in and out of cells, and are controlled by other cellular processes. To reveal this three-dimensional organisation, Grønberg et al. used X-ray diffraction, where high-energy radiation is passed through crystals of protein to reveal the positions of atoms. They focused on a type of PIB-4-ATPases found in bacteria as an example. The work showed that the protein does not contain the metal-binding regions seen in other classes of metal exporters; however, it sports unique features that are crucial for metal transport such as an adapted pathway for the transport of zinc and cobalt across the membrane. In addition, Grønberg et al. tested thousands of compounds to see if they could block the activity of the protein, identifying two that could kill bacteria. This better understanding of how PIB-4-ATPases work could help to engineer plants capable of removing heavy metals from contaminated soils, as well as uncover new compounds to be used as antibiotics.


Assuntos
Íons/metabolismo , Metais Pesados/metabolismo , ATPases do Tipo-P/química , ATPases do Tipo-P/metabolismo , Rhodobacteraceae/enzimologia , Sítios de Ligação , Transporte Biológico , Proteínas de Transporte de Cátions/metabolismo , Modelos Moleculares , ATPases do Tipo-P/classificação , Conformação Proteica , Rhodobacteraceae/classificação , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA